gpt4 book ai didi

python - 如何加载预训练的 PyTorch 模型?

转载 作者:行者123 更新时间:2023-12-04 11:28:14 27 4
gpt4 key购买 nike

我正在关注 this保存和加载检查点指南。然而,有些事情是不对的。我的模型会训练并且参数会在训练阶段正确更新。但是,加载检查点时似乎出现了问题。也就是说,不再更新参数。
我的型号:

import torch
import torch.nn as nn
import torch.optim as optim

PATH = 'test.pt'

class model(nn.Module):
def __init__(self):
super(model, self).__init__()
self.a = torch.nn.Parameter(torch.rand(1, requires_grad=True))
self.b = torch.nn.Parameter(torch.rand(1, requires_grad=True))
self.c = torch.nn.Parameter(torch.rand(1, requires_grad=True))
#print(self.a, self.b, self.c)

def load(self):
try:
checkpoint = torch.load(PATH)
print('\nloading pre-trained model...')
self.a = checkpoint['a']
self.b = checkpoint['b']
self.c = checkpoint['c']
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(self.a, self.b, self.c)
except: #file doesn't exist yet
pass

@property
def b_opt(self):
return torch.tanh(self.b)*2

def train(self):
print('training...')
for epoch in range(3):
print(self.a, self.b, self.c)
for r in range(5):
optimizer.zero_grad()
loss = torch.square(5 * (r > 2) * (3) - model_net.a * torch.sigmoid((r - model_net.b)) * (model_net.c))
loss.backward(retain_graph=True) #accumulate gradients

#checkpoint save
torch.save({
'model': model_net.state_dict(),
'a': model_net.a,
'b': model_net.b,
'c': model_net.c,
'optimizer_state_dict': optimizer.state_dict(),
}, PATH)


optimizer.step()



model_net = model()
optimizer = optim.Adam(model_net.parameters(), lr = 0.1)


print(model_net.a)
print(model_net.b)
print(model_net.c)
这打印
Parameter containing:
tensor([0.4214], requires_grad=True)
Parameter containing:
tensor([0.3862], requires_grad=True)
Parameter containing:
tensor([0.8812], requires_grad=True)
然后我运行 model_net.train()查看参数是否正在更新并输出:
training...
Parameter containing:
tensor([0.9990], requires_grad=True) Parameter containing:
tensor([0.1580], requires_grad=True) Parameter containing:
tensor([0.1517], requires_grad=True)
Parameter containing:
tensor([1.0990], requires_grad=True) Parameter containing:
tensor([0.0580], requires_grad=True) Parameter containing:
tensor([0.2517], requires_grad=True)
Parameter containing:
tensor([1.1974], requires_grad=True) Parameter containing:
tensor([-0.0404], requires_grad=True) Parameter containing:
tensor([0.3518], requires_grad=True)
运行 model_net.load()输出:
loading pre-trained model...
Parameter containing:
tensor([1.1974], requires_grad=True) Parameter containing:
tensor([-0.0404], requires_grad=True) Parameter containing:
tensor([0.3518], requires_grad=True)
最后,运行 model_net.train()再次输出:
training...
Parameter containing:
tensor([1.1974], requires_grad=True) Parameter containing:
tensor([-0.0404], requires_grad=True) Parameter containing:
tensor([0.3518], requires_grad=True)
Parameter containing:
tensor([1.1974], requires_grad=True) Parameter containing:
tensor([-0.0404], requires_grad=True) Parameter containing:
tensor([0.3518], requires_grad=True)
Parameter containing:
tensor([1.1974], requires_grad=True) Parameter containing:
tensor([-0.0404], requires_grad=True) Parameter containing:
tensor([0.3518], requires_grad=True)
更新 1 .
按照@jhso 的建议,我将负载更改为:
def load(self):
try:
checkpoint = torch.load(PATH)
print('\nloading pre-trained model...')
self.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(self.a, self.b, self.c)
except: #file doesn't exist yet
pass
这几乎似乎有效(网络现在正在训练),但我认为优化器没有正确加载。那是因为它没有通过 self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) .
你可以看到,因为它没有 print(self.a, self.b, self.c)当我跑
model_net.load()

最佳答案

您加载数据的方式不是加载参数的推荐方式,因为您正在覆盖图形连接(或沿着这些线的东西......)。您甚至可以保存模型 state_dict,那么为什么不使用它呢!
我将加载功能更改为:

def load(self):
try:
checkpoint = torch.load(PATH)
print('\nloading pre-trained model...')
self.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(self.a, self.b, self.c)
self.train()
except: #file doesn't exist yet
pass
但请注意,要执行此操作,您必须将优化器添加到模型中:
model_net = model()
optimizer = optim.Adam(model_net.parameters(), lr = 0.1)
model_net.optimizer = optimizer
然后给出输出(正在运行的火车,负载,火车):
Parameter containing:
tensor([0.2316], requires_grad=True) Parameter containing:
tensor([0.4561], requires_grad=True) Parameter containing:
tensor([0.8626], requires_grad=True)
Parameter containing:
tensor([0.3316], requires_grad=True) Parameter containing:
tensor([0.3561], requires_grad=True) Parameter containing:
tensor([0.9626], requires_grad=True)
Parameter containing:
tensor([0.4317], requires_grad=True) Parameter containing:
tensor([0.2568], requires_grad=True) Parameter containing:
tensor([1.0620], requires_grad=True)

loading pre-trained model...
Parameter containing:
tensor([0.4317], requires_grad=True) Parameter containing:
tensor([0.2568], requires_grad=True) Parameter containing:
tensor([1.0620], requires_grad=True)
training...
Parameter containing:
tensor([0.4317], requires_grad=True) Parameter containing:
tensor([0.2568], requires_grad=True) Parameter containing:
tensor([1.0620], requires_grad=True)
Parameter containing:
tensor([0.5321], requires_grad=True) Parameter containing:
tensor([0.1577], requires_grad=True) Parameter containing:
tensor([1.1612], requires_grad=True)
Parameter containing:
tensor([0.6328], requires_grad=True) Parameter containing:
tensor([0.0583], requires_grad=True) Parameter containing:
tensor([1.2606], requires_grad=True)

关于python - 如何加载预训练的 PyTorch 模型?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67205948/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com