- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经阅读了有关不向数据库添加重复记录的 Pandas to_sql 解决方案。我正在处理日志的 csv 文件,每次我上传一个新的日志文件时,我都会读取数据并使用 Pandas 创建一个新的数据框进行一些更改。
然后我执行 to_sql('Logs',con = db.engine, if_exists = 'append', index=True)
.与 if_exists
arg i
确保每次从新文件中新创建的数据框都附加到现有数据库中。问题是它不断添加重复的值。我想确保如果一个已经上传的文件被错误地再次上传,它不会被附加到数据库中。我想在创建数据库时直接尝试这样做,而没有找到解决方法,例如检查之前是否使用过文件名。
我正在使用flask-sqlalchemy。
谢谢你。
最佳答案
最好的办法是通过将索引设置为主键来捕获重复项,然后使用 try
/except
捕获唯一性违规。你提到了另一篇建议关注 IntegrityError
的帖子。异常(exception),我同意这是最好的方法。您可以将其与去重功能结合使用,以确保您的表更新顺利运行。
演示问题
这是一个玩具示例:
from sqlalchemy import *
import sqlite3
# make a database, 'test', and a table, 'foo'.
conn = sqlite3.connect("test.db")
c = conn.cursor()
# id is a primary key. this will be the index column imported from to_sql().
c.execute('CREATE TABLE foo (id integer PRIMARY KEY, foo integer NOT NULL);')
# use the sqlalchemy engine.
engine = create_engine('sqlite:///test.db')
pd.read_sql("pragma table_info(foo)", con=engine)
cid name type notnull dflt_value pk
0 0 id integer 0 None 1
1 1 foo integer 1 None 0
df
和
df2
:
data = {'foo':[1,2,3]}
df = pd.DataFrame(data)
df
foo
0 1
1 2
2 3
data2 = {'foo':[3,4,5]}
df2 = pd.DataFrame(data2, index=[2,3,4])
df2
foo
2 3 # this row is a duplicate of df.iloc[2,:]
3 4
4 5
df
进表
foo
:
df.to_sql('foo', con=engine, index=True, index_label='id', if_exists='append')
pd.read_sql('foo', con=engine)
id foo
0 0 1
1 1 2
2 2 3
df2
,我们 catch 了
IntegrityError
:
try:
df2.to_sql('foo', con=engine, index=True, index_label='id', if_exists='append')
# use the generic Exception, both IntegrityError and sqlite3.IntegrityError caused trouble.
except Exception as e:
print("FAILURE TO APPEND: {}".format(e))
FAILURE TO APPEND: (sqlite3.IntegrityError) UNIQUE constraint failed: foo.id [SQL: 'INSERT INTO foo (id, foo) VALUES (?, ?)'] [parameters: ((2, 3), (3, 4), (4, 5))]
IntegrityError
,您可以拉取现有表数据,删除新数据的重复条目,然后重试 append 语句。使用
apply()
为了这:
def append_db(data):
try:
data.to_sql('foo', con=engine, index=True, index_label='id', if_exists='append')
return 'Success'
except Exception as e:
print("Initial failure to append: {}\n".format(e))
print("Attempting to rectify...")
existing = pd.read_sql('foo', con=engine)
to_insert = data.reset_index().rename(columns={'index':'id'})
mask = ~to_insert.id.isin(existing.id)
try:
to_insert.loc[mask].to_sql('foo', con=engine, index=False, if_exists='append')
print("Successful deduplication.")
except Exception as e2:
"Could not rectify duplicate entries. \n{}".format(e2)
return 'Success after dedupe'
df2.apply(append_db)
Initial failure to append: (sqlite3.IntegrityError) UNIQUE constraint failed: foo.id [SQL: 'INSERT INTO foo (id, foo) VALUES (?, ?)'] [parameters: ((2, 3), (3, 4), (4, 5))]
Attempting to rectify...
Successful deduplication.
foo Success after dedupe
dtype: object
关于Pandas to_sql 使索引唯一,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46016799/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!