gpt4 book ai didi

python-3.x - 为什么 heapq.heapify 这么快?

转载 作者:行者123 更新时间:2023-12-04 11:26:11 26 4
gpt4 key购买 nike

我尝试重新实现 heapify 方法以使用 _siftup_siftdown用于更新或删除堆中的任何节点并保持 O(log(n)) 的时间复杂度。
我做了一些努力来优化我的代码,但与 heapq.heapify 相比,它们被证明更糟。 (就所用的总时间而言)。所以我决定调查source code .并将复制的代码与模块的代码进行比较。

# heap invariant.
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem < parent:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem

def _siftup(heap, pos):
endpos = len(heap)
startpos = pos
newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
childpos = 2*pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
rightpos = childpos + 1
if rightpos < endpos and not heap[childpos] < heap[rightpos]:
childpos = rightpos
# Move the smaller child up.
heap[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap[pos] = newitem
_siftdown(heap, startpos, pos)


def heapify(x):
"""Transform list into a heap, in-place, in O(len(x)) time."""
n = len(x)
# Transform bottom-up. The largest index there's any point to looking at
# is the largest with a child index in-range, so must have 2*i + 1 < n,
# or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
# j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
# (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
for i in reversed(range(n//2)):
_siftup(x, i)

a = list(reversed(range(1000000)))
b = a.copy()

import heapq

import time

cp1 = time.time()
heapq.heapify(a)
cp2 = time.time()
heapify(b)
cp3 = time.time()

print(a == b)
print(cp3 - cp2, cp2 - cp1)


我总是发现 cp3 - cp2 >= cp2 - cp1和不一样,heapify花了比heapq.heaify更多的时间即使两者相同。
在某些情况下 heapify花了 3 秒和 heapq.heapify用了 0.1 秒
heapq.heapfy 模块比相同的 heapify 执行得更快,它们仅通过导入而不同。
请让我知道原因,如果我犯了一些愚蠢的错误,我很抱歉。

最佳答案

heapify来自 heapq模块实际上是一个内置函数:

>>> import heapq
>>> heapq
<module 'heapq' from 'python3.9/heapq.py'>
>>> heapq.heapify
<built-in function heapify>
help(heapq.heapify)说:

Help on built-in function heapify in module _heapq...


所以它实际上是在导入内置模块 _heapq从而运行 C 代码,而不是 Python。
如果您滚动 heapq.py进一步代码,你会看到 this :
# If available, use C implementation
try:
from _heapq import *
except ImportError:
pass
这将覆盖像 heapify 这样的函数与他们的 C 实现。例如, _heapq.heapifyhere .

关于python-3.x - 为什么 heapq.heapify 这么快?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66442043/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com