gpt4 book ai didi

python - Spark 由 : java. lang.StackOverflowError 窗口函数引起?

转载 作者:行者123 更新时间:2023-12-04 11:24:13 25 4
gpt4 key购买 nike

遇到错误,我认为是由窗口函数引起的。

当我应用此脚本并仅保留几个示例行时,它可以正常工作,但是当我将其应用于整个数据集时(只有几 GB)
在尝试持久化到 hdfs 时,它在最后一步因这个奇怪的错误而失败......当我在没有窗口函数的情况下持久化时,脚本工作,所以问题一定来自( 我有大约 325 个特征列贯穿for 循环 )。

知道什么可能导致问题吗?我的目标是通过正向填充方法对数据框中的每个变量进行时间序列数据的估算。

from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql import types as T
from pyspark.sql import Window
import sys
print(spark.version)
'2.3.0'

# sample data
df = spark.createDataFrame([('2019-05-10 7:30:05', '1', '10', '0.5', 'FALSE'),\
('2019-05-10 7:30:10', '2', 'UNKNOWN', '0.24', 'FALSE'),\
('2019-05-10 7:30:15', '3', '6', 'UNKNOWN', 'TRUE'),\
('2019-05-10 7:30:20', '4', '7', 'UNKNOWN', 'UNKNOWN'),\
('2019-05-10 7:30:25', '5', '10', '1.1', 'UNKNOWN'),\
('2019-05-10 7:30:30', '6', 'UNKNOWN', '1.1', 'NULL'),\
('2019-05-10 7:30:35', '7', 'UNKNOWN', 'UNKNOWN', 'TRUE'),\
('2019-05-10 7:30:49', '8', '50', 'UNKNOWN', 'UNKNOWN')], ["date", "id", "v1", "v2", "v3"])

df = df.withColumn("date", F.col("date").cast("timestamp"))

# imputer process / all cols that need filled are strings
def stringReplacer(x, y):
return F.when(x != y, x).otherwise(F.lit(None)) # replace with NULL

def forwardFillImputer(df, cols=[], partitioner="date", value="UNKNOWN"):
for i in cols:
window = Window\
.partitionBy(F.month(partitioner))\
.orderBy(partitioner)\
.rowsBetween(-sys.maxsize, 0)

df = df\
.withColumn(i, stringReplacer(F.col(i), value))
fill = F.last(df[i], ignorenulls=True).over(window)
df = df.withColumn(i, fill)
return df
df2 = forwardFillImputer(df, cols=[i for i in df.columns])

# errors here
df2\
.write\
.format("csv")\
.mode("overwrite")\
.option("header", "true")\
.save("test_window_func.csv")

Py4JJavaError: An error occurred while calling o13504.save.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:224)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:154)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:273)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:267)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:225)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.StackOverflowError
at org.apache.spark.sql.execution.SparkPlan.prepare(SparkPlan.scala:200)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:200)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:200)
at scala.collection.immutable.List.foreach(List.scala:381)

可能的工作解决方案
def forwardFillImputer(df, cols=[], partitioner="date", value="UNKNOWN"):
window = Window \
.partitionBy(F.month(partitioner)) \
.orderBy(partitioner) \
.rowsBetween(-sys.maxsize, 0)
imputed_cols = [F.last(stringReplacer(F.col(i), value), ignorenulls=True).over(window).alias(i)
for i in cols]
missing_cols = [i for i in df.columns if i not in cols]
return df.select(missing_cols+imputed_cols)

df2 = forwardFillImputer(df, cols=[i for i in df.columns[1:]])

df2.printSchema()
root
|-- date: timestamp (nullable = true)
|-- id: string (nullable = true)
|-- v1: string (nullable = true)
|-- v2: string (nullable = true)
|-- v3: string (nullable = true)

df2.show()
+-------------------+---+---+----+-----+
| date| id| v1| v2| v3|
+-------------------+---+---+----+-----+
|2019-05-10 07:30:05| 1| 10| 0.5|FALSE|
|2019-05-10 07:30:10| 2| 10|0.24|FALSE|
|2019-05-10 07:30:15| 3| 6|0.24| TRUE|
|2019-05-10 07:30:20| 4| 7|0.24| TRUE|
|2019-05-10 07:30:25| 5| 10| 1.1| TRUE|
|2019-05-10 07:30:30| 6| 10| 1.1| NULL|
|2019-05-10 07:30:35| 7| 10| 1.1| TRUE|
|2019-05-10 07:30:49| 8| 50| 1.1| TRUE|
+-------------------+---+---+----+-----+

最佳答案

通过提供的堆栈跟踪,我相信错误来自执行计划的准备,正如它所说:

Caused by: java.lang.StackOverflowError
at org.apache.spark.sql.execution.SparkPlan.prepare(SparkPlan.scala:200)

我相信这是因为你调用了方法 .withColumn在循环中两次。什么 .withColumn在 Spark 执行计划中确实是一个 select 1 列更改为方法中指定的所有列的语句。如果您有 325 列,那么对于单次迭代,这将在 325 列上调用两次选择 - > 650 列传递给规划器。这样做 325 次,您可以看到它是如何产生开销的。

然而,非常有趣的是,虽然您没有收到小样本的此错误,但我希望不然。

无论如何,您可以尝试像这样替换您的 forwardFillImputer:
def forwardFillImputer(df, cols=[], partitioner="date", value="UNKNOWN"):
window = Window \
.partitionBy(F.month(partitioner)) \
.orderBy(partitioner) \
.rowsBetween(-sys.maxsize, 0)

imputed_cols = [F.last(stringReplacer(F.col(i), value), ignorenulls=True).over(window).alias(i)
for i in cols]

missing_cols = [F.col(i) for i in df.columns if i not in cols]

return df.select(missing_cols + imputed_cols)

通过这种方式,您基本上只需将单个 select 语句解析为计划程序,这应该更容易处理。

作为一个警告,通常 Spark 不能很好地处理大量列,因此您可能会在此过程中看到其他奇怪的问题。

关于python - Spark 由 : java. lang.StackOverflowError 窗口函数引起?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56368747/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com