gpt4 book ai didi

r - 对象中的缺失值 - R 中的随机森林混淆矩阵

转载 作者:行者123 更新时间:2023-12-04 11:14:18 25 4
gpt4 key购买 nike

我试图在拟合模型但没有成功后获得混淆矩阵。相反,使用相同的代码和决策树没有问题。那是我的代码:

library(caret)
library(randomForest)

training <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv", na.strings=c("#DIV/0!"), row.names = 1)

to_exclude <- nearZeroVar(training)
training <- training[, -to_exclude]

set.seed(1234)
train_idx <- createDataPartition(training$classe, p = 0.8, list = FALSE)
train <- training[train_idx,]
validation <- training[-train_idx,]

rf_model <- randomForest(classe ~ . , data=train, method="class")
rf_validation <- predict(rf_model, validation, type="class")

confusionMatrix(rf_validation, validation$classe)

那是错误:

Error in na.fail.default(list(classe = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : missing values in object

我也试试这个:

table(rf_validation, validation$classe)

这导致了同样的错误。如果我使用:

dt_model <- rpart(classe ~ ., data=train, method="class")

相反,一切正常。

我错过了什么?

最佳答案

正如@lukeA 所提到的,由于 NA 值,我遇到了问题。另一个对我有用的选择是稍微清理一下我的数据。:

training <- training[, colSums(is.na(training)) == 0]

删除由 NA 值形成的特征。

关于r - 对象中的缺失值 - R 中的随机森林混淆矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35092222/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com