gpt4 book ai didi

python - 具有最大可区分颜色的颜色图

转载 作者:行者123 更新时间:2023-12-04 11:10:57 26 4
gpt4 key购买 nike

在 Python 中使用 matplotlib 我正在绘制 20 到 50 行之间的任何地方。使用 matplotlib 的滑动色标,在绘制一定数量的线后(远在 20 之前),这些变得无法区分。

虽然我已经在 Matlab 和 C# 中看到了一些代码示例来创建任意数量的颜色的颜色图,这些颜色可以最大程度地相互区分,但我找不到任何适用于 Python 的东西。

任何人都可以指出我在 Python 中可以做到这一点的方向吗?

干杯

最佳答案

我喜欢 @xuancong84 创建的调色板的想法,并稍微修改了他的代码,使其不依赖于 alpha channel 。我把它放在这里供其他人使用,谢谢@xuancong84!

import math

import numpy as np
from matplotlib.colors import ListedColormap
from matplotlib.cm import hsv


def generate_colormap(number_of_distinct_colors: int = 80):
if number_of_distinct_colors == 0:
number_of_distinct_colors = 80

number_of_shades = 7
number_of_distinct_colors_with_multiply_of_shades = int(math.ceil(number_of_distinct_colors / number_of_shades) * number_of_shades)

# Create an array with uniformly drawn floats taken from <0, 1) partition
linearly_distributed_nums = np.arange(number_of_distinct_colors_with_multiply_of_shades) / number_of_distinct_colors_with_multiply_of_shades

# We are going to reorganise monotonically growing numbers in such way that there will be single array with saw-like pattern
# but each saw tooth is slightly higher than the one before
# First divide linearly_distributed_nums into number_of_shades sub-arrays containing linearly distributed numbers
arr_by_shade_rows = linearly_distributed_nums.reshape(number_of_shades, number_of_distinct_colors_with_multiply_of_shades // number_of_shades)

# Transpose the above matrix (columns become rows) - as a result each row contains saw tooth with values slightly higher than row above
arr_by_shade_columns = arr_by_shade_rows.T

# Keep number of saw teeth for later
number_of_partitions = arr_by_shade_columns.shape[0]

# Flatten the above matrix - join each row into single array
nums_distributed_like_rising_saw = arr_by_shade_columns.reshape(-1)

# HSV colour map is cyclic (https://matplotlib.org/tutorials/colors/colormaps.html#cyclic), we'll use this property
initial_cm = hsv(nums_distributed_like_rising_saw)

lower_partitions_half = number_of_partitions // 2
upper_partitions_half = number_of_partitions - lower_partitions_half

# Modify lower half in such way that colours towards beginning of partition are darker
# First colours are affected more, colours closer to the middle are affected less
lower_half = lower_partitions_half * number_of_shades
for i in range(3):
initial_cm[0:lower_half, i] *= np.arange(0.2, 1, 0.8/lower_half)

# Modify second half in such way that colours towards end of partition are less intense and brighter
# Colours closer to the middle are affected less, colours closer to the end are affected more
for i in range(3):
for j in range(upper_partitions_half):
modifier = np.ones(number_of_shades) - initial_cm[lower_half + j * number_of_shades: lower_half + (j + 1) * number_of_shades, i]
modifier = j * modifier / upper_partitions_half
initial_cm[lower_half + j * number_of_shades: lower_half + (j + 1) * number_of_shades, i] += modifier

return ListedColormap(initial_cm)


这些是我得到的颜色:

from matplotlib import pyplot as plt
import numpy as np

N = 16
M = 7
H = np.arange(N*M).reshape([N,M])
fig = plt.figure(figsize=(10, 10))
ax = plt.pcolor(H, cmap=generate_colormap(N*M))
plt.show()

enter image description here

关于python - 具有最大可区分颜色的颜色图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42697933/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com