gpt4 book ai didi

topic-modeling - Mallet主题模型示例无法编译

转载 作者:行者123 更新时间:2023-12-04 11:05:55 25 4
gpt4 key购买 nike

我想在我的 Java 中编译 mallet(而不是使用命令行),所以我将 jar 包含在我的项目中,并引用了来自以下示例的代码:http://mallet.cs.umass.edu/topics-devel.php ,但是,当我运行此代码时,出现以下错误:

Exception in thread "main" java.lang.NoClassDefFoundError: gnu/trove/TObjectIntHashMap
at cc.mallet.types.Alphabet.<init>(Alphabet.java:51)
at cc.mallet.types.Alphabet.<init>(Alphabet.java:70)
at cc.mallet.pipe.TokenSequence2FeatureSequence.<init> (TokenSequence2FeatureSequence.java:35)
at mallet.TopicModel.main(TopicModel.java:25)
Caused by: java.lang.ClassNotFoundException: gnu.trove.TObjectIntHashMap
at java.net.URLClassLoader$1.run(Unknown Source)
at java.net.URLClassLoader$1.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
... 4 more

我不确定是什么导致了错误。有人可以帮忙吗?
package mallet;

import cc.mallet.util.*;
import cc.mallet.types.*;
import cc.mallet.pipe.*;
import cc.mallet.pipe.iterator.*;
import cc.mallet.topics.*;

import java.util.*;
import java.util.regex.*;
import java.io.*;

public class TopicModel {

public static void main(String[] args) throws Exception {

String filePath = "D:/ap.txt";
// Begin by importing documents from text to feature sequences
ArrayList<Pipe> pipeList = new ArrayList<Pipe>();

// Pipes: lowercase, tokenize, remove stopwords, map to features
pipeList.add( new CharSequenceLowercase() );
pipeList.add( new CharSequence2TokenSequence(Pattern.compile("\\p{L}[\\p{L}\\p{P}]+\\p{L}")) );
pipeList.add( new TokenSequenceRemoveStopwords(new File("stoplists/en.txt"), "UTF-8", false, false, false) );
pipeList.add( new TokenSequence2FeatureSequence() );

InstanceList instances = new InstanceList (new SerialPipes(pipeList));

Reader fileReader = new InputStreamReader(new FileInputStream(new File(filePath)), "UTF-8");
instances.addThruPipe(new CsvIterator (fileReader, Pattern.compile("^(\\S*)[\\s,]*(\\S*)[\\s,]*(.*)$"),
3, 2, 1)); // data, label, name fields

// Create a model with 100 topics, alpha_t = 0.01, beta_w = 0.01
// Note that the first parameter is passed as the sum over topics, while
// the second is
int numTopics = 100;
ParallelTopicModel model = new ParallelTopicModel(numTopics, 1.0, 0.01);

model.addInstances(instances);

// Use two parallel samplers, which each look at one half the corpus and combine
// statistics after every iteration.
model.setNumThreads(2);

// Run the model for 50 iterations and stop (this is for testing only,
// for real applications, use 1000 to 2000 iterations)
model.setNumIterations(50);
model.estimate();

// Show the words and topics in the first instance

// The data alphabet maps word IDs to strings
Alphabet dataAlphabet = instances.getDataAlphabet();

FeatureSequence tokens = (FeatureSequence) model.getData().get(0).instance.getData();
LabelSequence topics = model.getData().get(0).topicSequence;

Formatter out = new Formatter(new StringBuilder(), Locale.US);
for (int position = 0; position < tokens.getLength(); position++) {
out.format("%s-%d ", dataAlphabet.lookupObject(tokens.getIndexAtPosition(position)), topics.getIndexAtPosition(position));
}
System.out.println(out);

// Estimate the topic distribution of the first instance,
// given the current Gibbs state.
double[] topicDistribution = model.getTopicProbabilities(0);

// Get an array of sorted sets of word ID/count pairs
ArrayList<TreeSet<IDSorter>> topicSortedWords = model.getSortedWords();

// Show top 5 words in topics with proportions for the first document
for (int topic = 0; topic < numTopics; topic++) {
Iterator<IDSorter> iterator = topicSortedWords.get(topic).iterator();

out = new Formatter(new StringBuilder(), Locale.US);
out.format("%d\t%.3f\t", topic, topicDistribution[topic]);
int rank = 0;
while (iterator.hasNext() && rank < 5) {
IDSorter idCountPair = iterator.next();
out.format("%s (%.0f) ", dataAlphabet.lookupObject(idCountPair.getID()), idCountPair.getWeight());
rank++;
}
System.out.println(out);
}

// Create a new instance with high probability of topic 0
StringBuilder topicZeroText = new StringBuilder();
Iterator<IDSorter> iterator = topicSortedWords.get(0).iterator();

int rank = 0;
while (iterator.hasNext() && rank < 5) {
IDSorter idCountPair = iterator.next();
topicZeroText.append(dataAlphabet.lookupObject(idCountPair.getID()) + " ");
rank++;
}

// Create a new instance named "test instance" with empty target and source fields.
InstanceList testing = new InstanceList(instances.getPipe());
testing.addThruPipe(new Instance(topicZeroText.toString(), null, "test instance", null));

TopicInferencer inferencer = model.getInferencer();
double[] testProbabilities = inferencer.getSampledDistribution(testing.get(0), 10, 1, 5);
System.out.println("0\t" + testProbabilities[0]);
}

}

最佳答案

我解决了这个问题。
首先,我尝试在我的 Eclipse 中导入 trove3.1 但它不起作用。
然后,我注意到在 Mallet 文件夹中,有一个“lib”文件夹,所以我在我的 Eclipse 中包含了所有 jar 文件。答对了!有用。

关于topic-modeling - Mallet主题模型示例无法编译,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25356870/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com