- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
Keras 介绍 tf.keras.preprocessing.image_dataset_from_directory功能最近,比以前更高效ImageDataGenerator.flow_from_directory tensorflow 2.x 中的方法。
我正在练习 catvsdogs 问题并使用此函数为我的模型构建数据管道。训练模型后,我使用 preds = model.predict(test_ds) 来获取我的测试数据集的预测。我应该如何将pred与图片名称匹配? (之前有 generator.filenames,但在新方法中不再存在。)谢谢!
最佳答案
我有一个类似的问题。解决方案是采用底层 tf.keras.preprocessing.image_dataset_from_directory 函数并将 'image_paths' 变量添加到 return 语句。这不会产生计算开销,因为文件名已经被检索到。
主要功能代码取自GitHub:https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/keras/preprocessing/image_dataset.py#L34-L206
见下文:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.keras.layers.preprocessing import image_preprocessing
from tensorflow.python.keras.preprocessing import dataset_utils
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import io_ops
from tensorflow.python.util.tf_export import keras_export
WHITELIST_FORMATS = ('.bmp', '.gif', '.jpeg', '.jpg', '.png')
## Tensorflow override method to return fname as list as well as dataset
def image_dataset_from_directory(directory,
labels='inferred',
label_mode='int',
class_names=None,
color_mode='rgb',
batch_size=32,
image_size=(256, 256),
shuffle=True,
seed=None,
validation_split=None,
subset=None,
interpolation='bilinear',
follow_links=False):
if labels != 'inferred':
if not isinstance(labels, (list, tuple)):
raise ValueError(
'`labels` argument should be a list/tuple of integer labels, of '
'the same size as the number of image files in the target '
'directory. If you wish to infer the labels from the subdirectory '
'names in the target directory, pass `labels="inferred"`. '
'If you wish to get a dataset that only contains images '
'(no labels), pass `label_mode=None`.')
if class_names:
raise ValueError('You can only pass `class_names` if the labels are '
'inferred from the subdirectory names in the target '
'directory (`labels="inferred"`).')
if label_mode not in {'int', 'categorical', 'binary', None}:
raise ValueError(
'`label_mode` argument must be one of "int", "categorical", "binary", '
'or None. Received: %s' % (label_mode,))
if color_mode == 'rgb':
num_channels = 3
elif color_mode == 'rgba':
num_channels = 4
elif color_mode == 'grayscale':
num_channels = 1
else:
raise ValueError(
'`color_mode` must be one of {"rbg", "rgba", "grayscale"}. '
'Received: %s' % (color_mode,))
interpolation = image_preprocessing.get_interpolation(interpolation)
dataset_utils.check_validation_split_arg(
validation_split, subset, shuffle, seed)
if seed is None:
seed = np.random.randint(1e6)
image_paths, labels, class_names = dataset_utils.index_directory(
directory,
labels,
formats=WHITELIST_FORMATS,
class_names=class_names,
shuffle=shuffle,
seed=seed,
follow_links=follow_links)
if label_mode == 'binary' and len(class_names) != 2:
raise ValueError(
'When passing `label_mode="binary", there must exactly 2 classes. '
'Found the following classes: %s' % (class_names,))
image_paths, labels = dataset_utils.get_training_or_validation_split(
image_paths, labels, validation_split, subset)
dataset = paths_and_labels_to_dataset(
image_paths=image_paths,
image_size=image_size,
num_channels=num_channels,
labels=labels,
label_mode=label_mode,
num_classes=len(class_names),
interpolation=interpolation)
if shuffle:
# Shuffle locally at each iteration
dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed)
dataset = dataset.batch(batch_size)
# Users may need to reference `class_names`.
dataset.class_names = class_names
return dataset, image_paths
def paths_and_labels_to_dataset(image_paths,
image_size,
num_channels,
labels,
label_mode,
num_classes,
interpolation):
"""Constructs a dataset of images and labels."""
# TODO(fchollet): consider making num_parallel_calls settable
path_ds = dataset_ops.Dataset.from_tensor_slices(image_paths)
img_ds = path_ds.map(
lambda x: path_to_image(x, image_size, num_channels, interpolation))
if label_mode:
label_ds = dataset_utils.labels_to_dataset(labels, label_mode, num_classes)
img_ds = dataset_ops.Dataset.zip((img_ds, label_ds))
return img_ds
def path_to_image(path, image_size, num_channels, interpolation):
img = io_ops.read_file(path)
img = image_ops.decode_image(
img, channels=num_channels, expand_animations=False)
img = image_ops.resize_images_v2(img, image_size, method=interpolation)
img.set_shape((image_size[0], image_size[1], num_channels))
return img
然后它将作为:
train_dir = '/content/drive/My Drive/just_monkeying_around/monkey_training'
BATCH_SIZE = 32
IMG_SIZE = (224, 224)
train_dataset, train_paths = image_dataset_from_directory(train_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE)
train_paths 返回文件字符串列表。
关于tensorflow - 在使用 tf.keras.preprocessing.image_dataset_from_directory() 时如何在预测期间获取文件名?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62166588/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!