- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
考虑向量s
如下:
s=seq(0.01, 0.99, 0.01)
> s
[1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.08 0.09 .......... 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
s
和固定长度
m
,我希望有一个矩阵,用于长度
m
的所有可能排列,这样矩阵的每一行总和为
1
(不包括蛮力方法)。
m=4
(即列数),则所需的矩阵将如下所示:
0.01 0.01 0.01 0.97
0.02 0.01 0.01 0.96
0.03 0.01 0.01 0.95
0.04 0.01 0.01 0.94
0.05 0.01 0.01 0.93
0.06 0.01 0.01 0.92
.
.
.
0.53 0.12 0.30 0.05
.
.
.
0.96 0.02 0.01 0.01
0.97 0.01 0.01 0.01
.
.
.
0.01 0.97 0.01 0.01
.
.
.
最佳答案
这是使用递归操作的方法:
permsum <- function(s,m) if (m==1L) matrix(s) else do.call(rbind,lapply(seq_len(s-m+1L),function(x) unname(cbind(x,permsum(s-x,m-1L)))));
res <- permsum(100L,4L);
head(res);
## [,1] [,2] [,3] [,4]
## [1,] 1 1 1 97
## [2,] 1 1 2 96
## [3,] 1 1 3 95
## [4,] 1 1 4 94
## [5,] 1 1 5 93
## [6,] 1 1 6 92
tail(res);
## [,1] [,2] [,3] [,4]
## [156844,] 95 2 2 1
## [156845,] 95 3 1 1
## [156846,] 96 1 1 2
## [156847,] 96 1 2 1
## [156848,] 96 2 1 1
## [156849,] 97 1 1 1
head(res)/100;
## [,1] [,2] [,3] [,4]
## [1,] 0.01 0.01 0.01 0.97
## [2,] 0.01 0.01 0.02 0.96
## [3,] 0.01 0.01 0.03 0.95
## [4,] 0.01 0.01 0.04 0.94
## [5,] 0.01 0.01 0.05 0.93
## [6,] 0.01 0.01 0.06 0.92
s
这是输出矩阵中每一行应求和的目标值。
m
这是在输出矩阵中产生的列数。
s
是表示目标整数总和的标量整数。
seq_len()
生成的序列:
seq_len(s-m+1L)
s
的总和的一部分,并且剩余
m
列。例如,考虑
s=100,m=4
的情况:我们可以使用的最高数字是97,参与总数为97 + 1 + 1 + 1。每个剩余的列将最大可能值减1,这就是为什么在计算序列长度时必须从
m
中减去
s
的原因。
do.call(rbind,lapply(seq_len(s-m+1L),function(x) ...))
lapply()
来做到这一点。
permsum()
进行单个递归调用,然后对当前选择的返回值
cbind()
进行调用。这将产生一个矩阵,对于此递归级别,该矩阵始终具有相同的宽度。因此,
lapply()
调用将返回所有宽度相同的矩阵列表。然后,我们必须将它们行绑定在一起,这就是为什么我们必须在此处使用
do.call(rbind,...)
技巧的原因。
unname(cbind(x,permsum(s-x,m-1L)))
cbind()
当前选择
x
,完成该子矩阵的求和。不幸的是,我们必须调用
unname()
,否则最终通过
x
参数设置的每一列将具有列名
x
。
x
,所以我们必须从
s
中减去它以获得新的求和目标,即将进行的递归调用将负责实现该目标。因此,第一个参数变为
s-x
。其次,由于
x
的选择占用一列,因此必须从
m
减去1,以便递归调用将在其输出矩阵中减少产生一列。
if (m==1L) matrix(s) else ...
m
是否已达到1,在这种情况下,我们可以简单地返回所需的总和
s
本身。
library(data.table);
bgoldst <- function(s,m) permsum(s,m)/s;
psidom <- function(ss,m) { raw <- do.call(data.table::CJ,rep(list(ss),m)); raw[rowSums(raw)==1,]; };
## helper function to sort a matrix by columns
smp <- function(m) m[do.call(order,as.data.frame(m)),];
s <- 100L; m <- 3L; ss <- seq_len(s-1L)/s;
x <- smp(bgoldst(s,m));
y <- smp(unname(as.matrix(psidom(ss,m))));
nrow(x);
## [1] 4851
nrow(y);
## [1] 4809
x==do.call(rbind,c(list(y),rep(list(NA),nrow(x)-nrow(y))));
## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE
## [4,] TRUE TRUE TRUE
## [5,] TRUE TRUE TRUE
##
## ... snip ...
##
## [24,] TRUE TRUE TRUE
## [25,] TRUE TRUE TRUE
## [26,] TRUE TRUE TRUE
## [27,] TRUE TRUE TRUE
## [28,] TRUE TRUE TRUE
## [29,] TRUE FALSE FALSE
## [30,] TRUE FALSE FALSE
## [31,] TRUE FALSE FALSE
## [32,] TRUE FALSE FALSE
## [33,] TRUE FALSE FALSE
##
## ... snip ...
win <- 27:31;
x[win,]; y[win,];
## [,1] [,2] [,3]
## [1,] 0.01 0.27 0.72
## [2,] 0.01 0.28 0.71
## [3,] 0.01 0.29 0.70 (missing from y)
## [4,] 0.01 0.30 0.69 (missing from y)
## [5,] 0.01 0.31 0.68
## [,1] [,2] [,3]
## [1,] 0.01 0.27 0.72
## [2,] 0.01 0.28 0.71
## [3,] 0.01 0.31 0.68
## [4,] 0.01 0.32 0.67
## [5,] 0.01 0.33 0.66
CJ()
函数对浮点数做了奇怪的事情,但是进一步的测试似乎表明它是
rowSums()
在做的事情:
0.01+0.29+0.70==1;
## [1] TRUE
ss[1L]+ss[29L]+ss[70L]==1;
## [1] TRUE
rowSums(CJ(0.01,0.29,0.70))==1; ## looks like CJ()'s fault, but wait...
## [1] FALSE
cj <- CJ(0.01,0.29,0.70);
cj$V1+cj$V2+cj$V3==1; ## not CJ()'s fault
## [1] TRUE
rowSums(matrix(c(0.01,0.29,0.70),1L,byrow=T))==1; ## rowSums()'s fault
## [1] FALSE
rowSums()
怪癖。为此,我们需要取绝对差,然后对公差进行小于比的比较:
abs(rowSums(CJ(0.01,0.29,0.70))-1)<1e-10;
## [1] TRUE
psidom2 <- function(ss,m) { raw <- do.call(data.table::CJ,rep(list(ss),m)); raw[abs(rowSums(raw)-1)<1e-10,]; };
y <- smp(unname(as.matrix(psidom2(ss,m))));
nrow(y);
## [1] 4851
identical(x,y);
## [1] TRUE
combsum()
,但是为了反映这一启示,我将其重命名为
permsum()
。而且,正如约瑟夫(Joseph)所建议的,可以修改算法以产生组合,可以按以下步骤进行操作,直至达到名称
combsum()
:
combsum <- function(s,m,l=s) if (m==1L) matrix(s) else do.call(rbind,lapply(seq((s+m-1L)%/%m,min(l,s-m+1L)),function(x) unname(cbind(x,combsum(s-x,m-1L,x)))));
res <- combsum(100L,4L);
head(res);
## [,1] [,2] [,3] [,4]
## [1,] 25 25 25 25
## [2,] 26 25 25 24
## [3,] 26 26 24 24
## [4,] 26 26 25 23
## [5,] 26 26 26 22
## [6,] 27 25 24 24
tail(res);
## [,1] [,2] [,3] [,4]
## [7148,] 94 3 2 1
## [7149,] 94 4 1 1
## [7150,] 95 2 2 1
## [7151,] 95 3 1 1
## [7152,] 96 2 1 1
## [7153,] 97 1 1 1
l
,它代表“极限”。基本上,为了保证每个递归都生成唯一的组合,我强制每个选择必须小于或等于当前组合中的任何先前选择。这要求将当前上限作为参数
l
。在顶级调用中,
l
可以默认设置为
s
,这对于
m>1
的情况来说实际上还是太高了,但这不是问题,因为它只是在调用过程中将应用的两个上限之一序列生成。
x
lambda中进行递归调用时将最新选择
l
作为参数传递给
lapply()
。
seq((s+m-1L)%/%m,min(l,s-m+1L))
permsum()
中使用的1提高到可能仍允许下降幅度组合的最低可能选择。当然,最低可能的选择取决于尚未生产多少根色谱柱。列越多,我们必须留出更多的“空间”以供将来选择。公式是对
s
进行
m
的整数除法,但是我们也必须有效地“舍入”,这就是为什么我在进行除法之前添加
m-1L
的原因。我还考虑过进行浮点除法,然后调用
as.integer(ceiling(...))
,但是我认为全整数方法要好得多。
s=10,m=3
的情况。要产生10剩余的总和,剩下3列,我们不能选择小于4的选择,因为如果不增加组合,我们将没有足够的数量来产生10。在这种情况下,公式将12除以3得到4。
permsum()
中使用的相同公式来计算上限,除了我们还必须通过调用
l
来应用当前限制
min()
。
combsum()
在许多随机测试案例中的行为与Joseph的
IntegerPartitionsOfLength()
函数相同:
## helper function to sort a matrix within each row and then by columns
smc <- function(m) smp(t(apply(m,1L,sort)));
## test loop
for (i in seq_len(1000L)) {
repeat {
s <- sample(1:100,1L);
m <- sample(2:5,1L);
if (s>=m) break;
};
x <- combsum(s,m);
y <- IntegerPartitionsOfLength(s,m);
cat(paste0(s,',',m,'\n'));
if (!identical(smc(x),smc(y))) stop('bad.');
};
library(microbenchmark);
library(data.table);
library(partitions);
library(gtools);
permsum <- function(s,m) if (m==1L) matrix(s) else do.call(rbind,lapply(seq_len(s-m+1L),function(x) unname(cbind(x,permsum(s-x,m-1L)))));
combsum <- function(s,m,l=s) if (m==1L) matrix(s) else do.call(rbind,lapply(seq((s+m-1L)%/%m,min(l,s-m+1L)),function(x) unname(cbind(x,combsum(s-x,m-1L,x)))));
IntegerPartitionsOfLength <- function(n, Lim, combsOnly = TRUE) { a <- 0L:n; k <- 2L; a[2L] <- n; MyParts <- vector("list", length=P(n)); count <- 0L; while (!(k==1L) && k <= Lim + 1L) { x <- a[k-1L]+1L; y <- a[k]-1L; k <- k-1L; while (x<=y && k <= Lim) {a[k] <- x; y <- y-x; k <- k+1L}; a[k] <- x+y; if (k==Lim) { count <- count+1L; MyParts[[count]] <- a[1L:k]; }; }; MyParts <- MyParts[1:count]; if (combsOnly) {do.call(rbind, MyParts)} else {MyParts}; };
GetDecimalReps <- function(s,m) { myPerms <- permutations(m,m); lim <- nrow(myPerms); intParts <- IntegerPartitionsOfLength(s,m,FALSE); do.call(rbind, lapply(intParts, function(x) { unique(t(sapply(1L:lim, function(y) x[myPerms[y, ]]))); })); };
smp <- function(m) m[do.call(order,as.data.frame(m)),];
smc <- function(m) smp(t(apply(m,1L,sort)));
bgoldst.perm <- function(s,m) permsum(s,m)/s;
psidom2 <- function(ss,m) { raw <- do.call(data.table::CJ,rep(list(ss),m)); raw[abs(rowSums(raw)-1)<1e-10,]; };
joseph.perm <- function(s,m) GetDecimalReps(s,m)/s;
bgoldst.comb <- function(s,m) combsum(s,m)/s;
joseph.comb <- function(s,m) IntegerPartitionsOfLength(s,m)/s;
## small scale
s <- 10L; m <- 3L; ss <- seq_len(s-1L)/s;
ex <- smp(bgoldst.perm(s,m));
identical(ex,smp(unname(as.matrix(psidom2(ss,m)))));
## [1] TRUE
identical(ex,smp(joseph.perm(s,m)));
## [1] TRUE
microbenchmark(bgoldst.perm(s,m),psidom2(ss,m),joseph.perm(s,m));
## Unit: microseconds
## expr min lq mean median uq max neval
## bgoldst.perm(s, m) 347.254 389.5920 469.1011 420.383 478.7575 1869.697 100
## psidom2(ss, m) 702.206 830.5015 1007.5111 907.265 1038.3405 2618.089 100
## joseph.perm(s, m) 1225.225 1392.8640 1722.0070 1506.833 1860.0745 4411.234 100
## large scale
s <- 100L; m <- 4L; ss <- seq_len(s-1L)/s;
ex <- smp(bgoldst.perm(s,m));
identical(ex,smp(unname(as.matrix(psidom2(ss,m)))));
## [1] TRUE
identical(ex,smp(joseph.perm(s,m)));
## [1] TRUE
microbenchmark(bgoldst.perm(s,m),psidom2(ss,m),joseph.perm(s,m),times=5L);
## Unit: seconds
## expr min lq mean median uq max neval
## bgoldst.perm(s, m) 1.286856 1.304177 1.426376 1.374411 1.399850 1.766585 5
## psidom2(ss, m) 6.673545 7.046951 7.416161 7.115375 7.629177 8.615757 5
## joseph.perm(s, m) 5.299452 10.499891 13.769363 12.680607 15.107748 25.259117 5
## very large scale
s <- 100L; m <- 5L; ss <- seq_len(s-1L)/s;
ex <- smp(bgoldst.perm(s,m));
identical(ex,smp(unname(as.matrix(psidom2(ss,m)))));
## Error: cannot allocate vector of size 70.9 Gb
identical(ex,smp(joseph.perm(s,m)));
## [1] TRUE
microbenchmark(bgoldst.perm(s,m),joseph.perm(s,m),times=1L);
## Unit: seconds
## expr min lq mean median uq max neval
## bgoldst.perm(s, m) 28.58359 28.58359 28.58359 28.58359 28.58359 28.58359 1
## joseph.perm(s, m) 50.51965 50.51965 50.51965 50.51965 50.51965 50.51965 1
## small-scale
s <- 10L; m <- 3L;
ex <- smc(bgoldst.comb(s,m));
identical(ex,smc(joseph.comb(s,m)));
## [1] TRUE
microbenchmark(bgoldst.comb(s,m),joseph.comb(s,m));
## Unit: microseconds
## expr min lq mean median uq max neval
## bgoldst.comb(s, m) 161.225 179.6145 205.0898 187.3120 199.5005 1310.328 100
## joseph.comb(s, m) 172.344 191.8025 204.5681 197.7895 205.2735 437.489 100
## large-scale
s <- 100L; m <- 4L;
ex <- smc(bgoldst.comb(s,m));
identical(ex,smc(joseph.comb(s,m)));
## [1] TRUE
microbenchmark(bgoldst.comb(s,m),joseph.comb(s,m),times=5L);
## Unit: milliseconds
## expr min lq mean median uq max neval
## bgoldst.comb(s, m) 409.0708 485.9739 556.4792 591.4774 627.419 668.4548 5
## joseph.comb(s, m) 2164.2134 3315.0138 3317.9725 3540.6240 3713.732 3856.2793 5
## very large scale
s <- 100L; m <- 6L;
ex <- smc(bgoldst.comb(s,m));
identical(ex,smc(joseph.comb(s,m)));
## [1] TRUE
microbenchmark(bgoldst.comb(s,m),joseph.comb(s,m),times=1L);
## Unit: seconds
## expr min lq mean median uq max neval
## bgoldst.comb(s, m) 2.498588 2.498588 2.498588 2.498588 2.498588 2.498588 1
## joseph.comb(s, m) 12.344261 12.344261 12.344261 12.344261 12.344261 12.344261 1
关于r - 在给定的长度上,所有可能的十进制数字(百分数)的总和为1,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37686747/
fiddle :http://jsfiddle.net/rtucgv74/ 我正在尝试将第一个字符与 3 位数字匹配。所以下面的代码应该提醒f234。但反而返回 null ? 源代码: var reg
复制代码 代码如下: Dim strOk,strNo strOk = "12312321$12
我想找 {a number} / { a number } / {a string}模式。我可以得到number / number工作,但是当我添加 / string它不是。 我试图找到的例子: 15
我,我正在做一个模式正则表达式来检查字符串是否是: 数字.数字.数字,如下所示: 1.1.1 0.20.2 58.55541.5221 在java中我使用这个: private static Patt
我有一个字符串,我需要检查它是否在字符串的末尾包含一个数字/数字,并且需要将该数字/数字递增到字符串末尾 +1 我会得到下面的字符串 string2 = suppose_name_1 string3
我正在寻找一个正则表达式 (数字/数字),如(1/2) 数字必须是 1-3 位数字。我使用 Java。 我认为我的问题比正则表达式更深。我无法让这个工作 String s ="(1/15)";
谁能帮我理解为什么我在使用以下代码时会出现类型错误: function sumOfTwoNumbersInArray(a: [number, number]) { return a[0] +
我看到有些人过去也遇到过类似的问题,但他们似乎只是不同,所以解决方案也有所不同。所以这里是: 我正在尝试在 Google Apps 脚本中返回工作表的已知尺寸范围,如下所示: var myRange
我试图了解python中的正则表达式模块。我试图让我的程序从用户输入的一行文本中匹配以下模式: 8-13 之间的数字“/” 0-15 之间的数字 例如:8/2、11/13、10/9 等。 我想出的模式
简单地说,我当前正在开发的程序要求我拆分扫描仪输入(例如:2 个火腿和奶酪 5.5)。它应该读取杂货订单并将其分成三个数组。我应该使用 string.split 并能够将此输入分成三部分,而不管中间字
(number) & (-number) 是什么意思?我已经搜索过了,但无法找到含义 我想在 for 循环中使用 i & (-i),例如: for (i = 0; i 110000 .对于i没有高于
需要将图像ID设置为数字 var number = $(this).attr('rel'); number = parseInt(number); $('#carousel .slid
我有一个函数,我想确保它接受一个字符串,后跟一个数字。并且可选地,更多的字符串数字对。就像一个元组,但“无限”次: const fn = (...args: [string, number] | [s
我想复制“可用”输入数字的更改并将其添加或减去到“总计”中 如果此人将“可用”更改为“3”,则“总计”将变为“9”。 如果用户将“可用”更改为“5”,则“总计”将变为“11”。 $('#id1').b
我有一个与 R 中的断线相关的简单问题。 我正在尝试粘贴,但在获取(字符/数字)之间的断线时遇到问题。请注意,这些值包含在向量中(V1=81,V2=55,V3=25)我已经尝试过这段代码: cat(p
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我在 Typescript 中收到以下错误: Argument of type 'number[]' is not assignable to parameter of type 'number' 我
在本教程中,您将通过示例了解JavaScript 数字。 在JavaScript中,数字是基本数据类型。例如, const a = 3; const b = 3.13; 与其他一些编程语言不同
我在 MDN Reintroduction to JavaScript 上阅读JavaScript 数字只是浮点精度类型,JavaScript 中没有整数。然而 JavaScript 有两个函数,pa
我们在 Excel 中管理库存。我知道这有点过时,但我们正在发展商业公司,我们所有的钱都被困在业务上,没有钱投资 IT。 所以我想知道我可以用Excel自动完成产品编号的方式进行编程吗? 这是一个产品
我是一名优秀的程序员,十分优秀!