- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我刚刚在一台服务器上安装了 Airflow 1.10 using
sudo -E pip-3.6 install apache-airflow[celery,devel,postgres]
sudo -E pip-3.6 install apache-airflow[all]
airflow version
我得到以下输出
[ec2-user@ip-1-2-3-4 ~]$ airflow version
[2018-08-29 16:09:59,088] {{__init__.py:51}} INFO - Using executor SequentialExecutor
____________ _____________
____ |__( )_________ __/__ /________ __
____ /| |_ /__ ___/_ /_ __ /_ __ \_ | /| / /
___ ___ | / _ / _ __/ _ / / /_/ /_ |/ |/ /
_/_/ |_/_/ /_/ /_/ /_/ \____/____/|__/
v1.10.0
airflow initdb
,
airflow scheduler
, 和
airflow webserver
没有任何问题。但是当我打开我的一个 DAG 时,调度程序抛出了错误
[2018-08-29 16:17:34,547] {{base_executor.py:56}} INFO - Adding to queue: airflow run ScheduleTest successful 2018-08-29T19:00:00+00:00 --local -sd /home/ec2-user/{AIRFLOW_HOME}/dags/SchedulerTest.py
[2018-08-29 16:17:34,550] {{sequential_executor.py:45}} INFO - Executing command: airflow run ScheduleTest successful 2018-08-29T19:00:00+00:00 --local -sd /home/ec2-user/{AIRFLOW_HOME}/dags/SchedulerTest.py
[2018-08-29 16:17:35,224] {{__init__.py:51}} INFO - Using executor SequentialExecutor
[2018-08-29 16:17:35,345] {{models.py:258}} INFO - Filling up the DagBag from /home/ec2-user/{AIRFLOW_HOME}/dags/SchedulerTest.py
[2018-08-29 16:17:35,815] {{cli.py:492}} INFO - Running <TaskInstance: ScheduleTest.successful 2018-08-29T19:00:00+00:00 [queued]> on host ip-10-185-143-206
Traceback (most recent call last):
File "/usr/local/bin/airflow", line 32, in <module>
args.func(args)
File "/usr/local/lib/python3.6/site-packages/airflow/utils/cli.py", line 74, in wrapper
return f(*args, **kwargs)
File "/usr/local/lib/python3.6/site-packages/airflow/bin/cli.py", line 498, in run
_run(args, dag, ti)
File "/usr/local/lib/python3.6/site-packages/airflow/bin/cli.py", line 397, in _run
run_job.run()
File "/usr/local/lib/python3.6/site-packages/airflow/jobs.py", line 202, in run
self._execute()
File "/usr/local/lib/python3.6/site-packages/airflow/jobs.py", line 2582, in _execute
self.task_runner = get_task_runner(self)
File "/usr/local/lib/python3.6/site-packages/airflow/task/task_runner/__init__.py", line 43, in get_task_runner
raise AirflowException("Unknown task runner type {}".format(_TASK_RUNNER))
airflow.exceptions.AirflowException: Unknown task runner type StandardTaskRunner
Rename of BashTaskRunner to StandardTaskRunner BashTaskRunner has been renamed to StandardTaskRunner. It is the default task runner so you might need to update your config.
task_runner = StandardTaskRunner
airflow.cfg
中看到我所做的下面的文件
# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# This is the template for Airflow's default configuration. When Airflow is
# imported, it looks for a configuration file at $AIRFLOW_HOME/airflow.cfg. If
# it doesn't exist, Airflow uses this template to generate it by replacing
# variables in curly braces with their global values from configuration.py.
# Users should not modify this file; they should customize the generated
# airflow.cfg instead.
# ----------------------- TEMPLATE BEGINS HERE -----------------------
[core]
# The home folder for airflow, default is ~/airflow
airflow_home = {AIRFLOW_HOME}
# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
# This path must be absolute
dags_folder = {AIRFLOW_HOME}/dags
# The folder where airflow should store its log files
# This path must be absolute
base_log_folder = {AIRFLOW_HOME}/logs
# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
# Users must supply an Airflow connection id that provides access to the storage
# location. If remote_logging is set to true, see UPDATING.md for additional
# configuration requirements.
remote_logging = False
remote_log_conn_id =
remote_base_log_folder =
encrypt_s3_logs = False
# Logging level
logging_level = INFO
fab_logging_level = WARN
# Logging class
# Specify the class that will specify the logging configuration
# This class has to be on the python classpath
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
logging_config_class =airflow_local_settings.DEFAULT_LOGGING_CONFIG
# Log format
# we need to escape the curly braces by adding an additional curly brace
log_format = [%%(asctime)s] {{%%(filename)s:%%(lineno)d}} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
# Log filename format
# we need to escape the curly braces by adding an additional curly brace
log_filename_template = {{{{ ti.dag_id }}}}/{{{{ ti.task_id }}}}/{{{{ ts }}}}/{{{{ try_number }}}}.log
log_processor_filename_template = {{{{ filename }}}}.log
# Hostname by providing a path to a callable, which will resolve the hostname
hostname_callable = socket:getfqdn
# Default timezone in case supplied date times are naive
# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam)
default_timezone = utc
# The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor
executor = SequentialExecutor
# The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
sql_alchemy_conn = sqlite:///{AIRFLOW_HOME}/airflow.db
# If SqlAlchemy should pool database connections.
sql_alchemy_pool_enabled = True
# The SqlAlchemy pool size is the maximum number of database connections
# in the pool. 0 indicates no limit.
sql_alchemy_pool_size = 5
# The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite. If the number of DB connections is ever exceeded,
# a lower config value will allow the system to recover faster.
sql_alchemy_pool_recycle = 1800
# How many seconds to retry re-establishing a DB connection after
# disconnects. Setting this to 0 disables retries.
sql_alchemy_reconnect_timeout = 300
# The amount of parallelism as a setting to the executor. This defines
# the max number of task instances that should run simultaneously
# on this airflow installation
parallelism = 32
# The number of task instances allowed to run concurrently by the scheduler
dag_concurrency = 16
# Are DAGs paused by default at creation
dags_are_paused_at_creation = True
# When not using pools, tasks are run in the "default pool",
# whose size is guided by this config element
non_pooled_task_slot_count = 128
# The maximum number of active DAG runs per DAG
max_active_runs_per_dag = 16
# Whether to load the examples that ship with Airflow. It's good to
# get started, but you probably want to set this to False in a production
# environment
load_examples = True
# Where your Airflow plugins are stored
plugins_folder = {AIRFLOW_HOME}/plugins
# Secret key to save connection passwords in the db
fernet_key=ZFz1t3rs5fHD_vdxiBISbr23mhnigDB7YeN_Zek=
# Whether to disable pickling dags
donot_pickle = False
# How long before timing out a python file import while filling the DagBag
dagbag_import_timeout = 30
# The class to use for running task instances in a subprocess
task_runner = StandardTaskRunner
# If set, tasks without a `run_as_user` argument will be run with this user
# Can be used to de-elevate a sudo user running Airflow when executing tasks
default_impersonation =
# What security module to use (for example kerberos):
security =
# If set to False enables some unsecure features like Charts and Ad Hoc Queries.
# In 2.0 will default to True.
secure_mode = False
# Turn unit test mode on (overwrites many configuration options with test
# values at runtime)
unit_test_mode = False
# Name of handler to read task instance logs.
# Default to use task handler.
task_log_reader = task
# Whether to enable pickling for xcom (note that this is insecure and allows for
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
enable_xcom_pickling = True
# When a task is killed forcefully, this is the amount of time in seconds that
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
killed_task_cleanup_time = 60
# Whether to override params with dag_run.conf. If you pass some key-value pairs through `airflow backfill -c` or
# `airflow trigger_dag -c`, the key-value pairs will override the existing ones in params.
dag_run_conf_overrides_params = False
# Worker initialisation check to validate Metadata Database connection
worker_precheck = False
[cli]
# In what way should the cli access the API. The LocalClient will use the
# database directly, while the json_client will use the api running on the
# webserver
api_client = airflow.api.client.local_client
# If you set web_server_url_prefix, do NOT forget to append it here, ex:
# endpoint_url = http://localhost:8080/myroot
# So api will look like: http://localhost:8080/myroot/api/experimental/...
endpoint_url = http://localhost:8080
[api]
# How to authenticate users of the API
auth_backend = airflow.api.auth.backend.default
[lineage]
# what lineage backend to use
backend =
[atlas]
sasl_enabled = False
host =
port = 21000
username =
password =
[operators]
# The default owner assigned to each new operator, unless
# provided explicitly or passed via `default_args`
default_owner = Airflow
default_cpus = 1
default_ram = 512
default_disk = 512
default_gpus = 0
[hive]
# Default mapreduce queue for HiveOperator tasks
default_hive_mapred_queue =
# Template for mapred_job_name in HiveOperator, supports the following named parameters:
# hostname, dag_id, task_id, execution_date
mapred_job_name_template = Airflow HiveOperator task for {{hostname}}.{{dag_id}}.{{task_id}}.{{execution_date}}
[webserver]
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is used in automated emails that
# airflow sends to point links to the right web server
base_url = http://localhost:8080
# The ip specified when starting the web server
web_server_host = 0.0.0.0
# The port on which to run the web server
web_server_port = 8080
# Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_cert =
web_server_ssl_key =
# Number of seconds the webserver waits before killing gunicorn master that doesn't respond
web_server_master_timeout = 120
# Number of seconds the gunicorn webserver waits before timing out on a worker
web_server_worker_timeout = 120
# Number of workers to refresh at a time. When set to 0, worker refresh is
# disabled. When nonzero, airflow periodically refreshes webserver workers by
# bringing up new ones and killing old ones.
worker_refresh_batch_size = 1
# Number of seconds to wait before refreshing a batch of workers.
worker_refresh_interval = 30
# Secret key used to run your flask app
# It should be as random as possible
secret_key = {SECRET_KEY}
# Number of workers to run the Gunicorn web server
workers = 4
# The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = sync
# Log files for the gunicorn webserver. '-' means log to stderr.
access_logfile = -
error_logfile = -
# Expose the configuration file in the web server
expose_config = False
# Set to true to turn on authentication:
# https://airflow.incubator.apache.org/security.html#web-authentication
authenticate = False
# Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False
# Filtering mode. Choices include user (default) and ldapgroup.
# Ldap group filtering requires using the ldap backend
#
# Note that the ldap server needs the "memberOf" overlay to be set up
# in order to user the ldapgroup mode.
owner_mode = user
# Default DAG view. Valid values are:
# tree, graph, duration, gantt, landing_times
dag_default_view = tree
# Default DAG orientation. Valid values are:
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
dag_orientation = LR
# Puts the webserver in demonstration mode; blurs the names of Operators for
# privacy.
demo_mode = False
# The amount of time (in secs) webserver will wait for initial handshake
# while fetching logs from other worker machine
log_fetch_timeout_sec = 5
# By default, the webserver shows paused DAGs. Flip this to hide paused
# DAGs by default
hide_paused_dags_by_default = False
# Consistent page size across all listing views in the UI
page_size = 100
# Use FAB-based webserver with RBAC feature
rbac = False
# Define the color of navigation bar
navbar_color = #007A87
# Default dagrun to show in UI
default_dag_run_display_number = 25
[email]
email_backend = airflow.utils.email.send_email_smtp
[smtp]
# If you want airflow to send emails on retries, failure, and you want to use
# the airflow.utils.email.send_email_smtp function, you have to configure an
# smtp server here
smtp_host = localhost
smtp_starttls = True
smtp_ssl = False
# Uncomment and set the user/pass settings if you want to use SMTP AUTH
# smtp_user = airflow
# smtp_password = airflow
smtp_port = 25
smtp_mail_from = airflow@example.com
[celery]
# This section only applies if you are using the CeleryExecutor in
# [core] section above
# The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor
# The concurrency that will be used when starting workers with the
# "airflow worker" command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
worker_concurrency = 16
# When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
broker_url = sqla+mysql://airflow:airflow@localhost:3306/airflow
# The Celery result_backend. When a job finishes, it needs to update the
# metadata of the job. Therefore it will post a message on a message bus,
# or insert it into a database (depending of the backend)
# This status is used by the scheduler to update the state of the task
# The use of a database is highly recommended
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
result_backend = db+mysql://airflow:airflow@localhost:3306/airflow
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the IP that Celery Flower runs on
flower_host = 0.0.0.0
# The root URL for Flower
# Ex: flower_url_prefix = /flower
flower_url_prefix =
# This defines the port that Celery Flower runs on
flower_port = 5555
# Default queue that tasks get assigned to and that worker listen on.
default_queue = default
# Import path for celery configuration options
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
# In case of using SSL
ssl_active = False
ssl_key =
ssl_cert =
ssl_cacert =
[celery_broker_transport_options]
# This section is for specifying options which can be passed to the
# underlying celery broker transport. See:
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options
# The visibility timeout defines the number of seconds to wait for the worker
# to acknowledge the task before the message is redelivered to another worker.
# Make sure to increase the visibility timeout to match the time of the longest
# ETA you're planning to use.
#
# visibility_timeout is only supported for Redis and SQS celery brokers.
# See:
# http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
#
#visibility_timeout = 21600
[dask]
# This section only applies if you are using the DaskExecutor in
# [core] section above
# The IP address and port of the Dask cluster's scheduler.
cluster_address = 127.0.0.1:8786
# TLS/ SSL settings to access a secured Dask scheduler.
tls_ca =
tls_cert =
tls_key =
[scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 5
# The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 5
# after how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1
# after how much time (seconds) a new DAGs should be picked up from the filesystem
min_file_process_interval = 0
# How often (in seconds) to scan the DAGs directory for new files. Default to 5 minutes.
dag_dir_list_interval = 300
# How often should stats be printed to the logs
print_stats_interval = 30
child_process_log_directory = {AIRFLOW_HOME}/logs/scheduler
# Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 300
# Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True
# This changes the batch size of queries in the scheduling main loop.
# If this is too high, SQL query performance may be impacted by one
# or more of the following:
# - reversion to full table scan
# - complexity of query predicate
# - excessive locking
#
# Additionally, you may hit the maximum allowable query length for your db.
#
# Set this to 0 for no limit (not advised)
max_tis_per_query = 512
# Statsd (https://github.com/etsy/statsd) integration settings
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow
# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
max_threads = 2
authenticate = False
[ldap]
# set this to ldaps://<your.ldap.server>:<port>
uri =
user_filter = objectClass=*
user_name_attr = uid
group_member_attr = memberOf
superuser_filter =
data_profiler_filter =
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
search_scope = LEVEL
[mesos]
# Mesos master address which MesosExecutor will connect to.
master = localhost:5050
# The framework name which Airflow scheduler will register itself as on mesos
framework_name = Airflow
# Number of cpu cores required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_cpu = 1
# Memory in MB required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_memory = 256
# Enable framework checkpointing for mesos
# See http://mesos.apache.org/documentation/latest/slave-recovery/
checkpoint = False
# Failover timeout in milliseconds.
# When checkpointing is enabled and this option is set, Mesos waits
# until the configured timeout for
# the MesosExecutor framework to re-register after a failover. Mesos
# shuts down running tasks if the
# MesosExecutor framework fails to re-register within this timeframe.
# failover_timeout = 604800
# Enable framework authentication for mesos
# See http://mesos.apache.org/documentation/latest/configuration/
authenticate = False
# Mesos credentials, if authentication is enabled
# default_principal = admin
# default_secret = admin
# Optional Docker Image to run on slave before running the command
# This image should be accessible from mesos slave i.e mesos slave
# should be able to pull this docker image before executing the command.
# docker_image_slave = puckel/docker-airflow
[kerberos]
ccache = /tmp/airflow_krb5_ccache
# gets augmented with fqdn
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab
[github_enterprise]
api_rev = v3
[admin]
# UI to hide sensitive variable fields when set to True
hide_sensitive_variable_fields = True
[elasticsearch]
elasticsearch_host =
# we need to escape the curly braces by adding an additional curly brace
elasticsearch_log_id_template = {{dag_id}}-{{task_id}}-{{execution_date}}-{{try_number}}
elasticsearch_end_of_log_mark = end_of_log
[kubernetes]
# The repository, tag and imagePullPolicy of the Kubernetes Image for the Worker to Run
worker_container_repository =
worker_container_tag =
worker_container_image_pull_policy = IfNotPresent
worker_dags_folder =
# If True (default), worker pods will be deleted upon termination
delete_worker_pods = True
# The Kubernetes namespace where airflow workers should be created. Defaults to `default`
namespace = default
# The name of the Kubernetes ConfigMap Containing the Airflow Configuration (this file)
airflow_configmap =
# For either git sync or volume mounted DAGs, the worker will look in this subpath for DAGs
dags_volume_subpath =
# For DAGs mounted via a volume claim (mutually exclusive with volume claim)
dags_volume_claim =
# For volume mounted logs, the worker will look in this subpath for logs
logs_volume_subpath =
# A shared volume claim for the logs
logs_volume_claim =
# Git credentials and repository for DAGs mounted via Git (mutually exclusive with volume claim)
git_repo =
git_branch =
git_user =
git_password =
git_subpath =
# For cloning DAGs from git repositories into volumes: https://github.com/kubernetes/git-sync
git_sync_container_repository = gcr.io/google-containers/git-sync-amd64
git_sync_container_tag = v2.0.5
git_sync_init_container_name = git-sync-clone
# The name of the Kubernetes service account to be associated with airflow workers, if any.
# Service accounts are required for workers that require access to secrets or cluster resources.
# See the Kubernetes RBAC documentation for more:
# https://kubernetes.io/docs/admin/authorization/rbac/
worker_service_account_name =
# Any image pull secrets to be given to worker pods, If more than one secret is
# required, provide a comma separated list: secret_a,secret_b
image_pull_secrets =
# GCP Service Account Keys to be provided to tasks run on Kubernetes Executors
# Should be supplied in the format: key-name-1:key-path-1,key-name-2:key-path-2
gcp_service_account_keys =
# Use the service account kubernetes gives to pods to connect to kubernetes cluster.
# It's intended for clients that expect to be running inside a pod running on kubernetes.
# It will raise an exception if called from a process not running in a kubernetes environment.
in_cluster = True
[kubernetes_node_selectors]
# The Key-value pairs to be given to worker pods.
# The worker pods will be scheduled to the nodes of the specified key-value pairs.
# Should be supplied in the format: key = value
[kubernetes_secrets]
# The scheduler mounts the following secrets into your workers as they are launched by the
# scheduler. You may define as many secrets as needed and the kubernetes launcher will parse the
# defined secrets and mount them as secret environment variables in the launched workers.
# Secrets in this section are defined as follows
# <environment_variable_mount> = <kubernetes_secret_object>:<kubernetes_secret_key>
#
# For example if you wanted to mount a kubernetes secret key named `postgres_password` from the
# kubernetes secret object `airflow-secret` as the environment variable `POSTGRES_PASSWORD` into
# your workers you would follow the following format:
# POSTGRES_PASSWORD = airflow-secret:postgres_credentials
#
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
# formatting as suppont:d by airflow normally.
task_runner
必须等于
StandardTaskRunner
我只能把它改回原来的
BashTaskRunner
.一旦我设置
task_runner=BashTaskRunner
在
airflow.cfg
文件它的工作原理。发行说明显然与此相矛盾,所以请考虑我的困惑!
最佳答案
StandardTaskRunner 是 Airflow 的主版本当前支持的,但不支持 1.10 版本。暂时不要从 BashTaskRunner 更新您的 task_runner!
关于Airflow 1.10 - 未知的任务运行器类型 StandardTaskRunner,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52085455/
我有一个交叉表函数,我过去曾多次成功使用它,但现在它在最后转储所有数据,而不是将其旋转到输出表中。它似乎无法找到交叉表。我通过以下方式对其进行了研究; 如果 tablefunc 不存在则创建扩展; -
表1(客户表) Id, CustomerId, IsKnownCustomer,phonemacaddress 1, 空 0 00:9a:34:cf:a4 2, 004024 1 00:6f:64:c
知道为什么我总是收到这个烦人且无用的错误代码/描述吗? Failed to pull image myapidemodocker.azurecr.io/apidemo:v4.0: rpc error:
我正在进行 PHP 登录,并且之前可以正常工作,但我尝试使用户名功能不区分大小写,但此后代码一直无法正常工作。我删除了我添加的所有内容,以尝试使其不区分大小写,即 strtolower()。页面上显示
有人会帮助我提供有关此错误的任何可能信息吗?原因?登录?在哪里寻找/开始? Cannot use output buffering in output buffering display handl
我已经添加了这样的脚本 我在我的 test.js 中做了这个 var app = angular.module('MyApp', ['ngRoute']).config
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 8 年前。 Improve this qu
我有这个sql语句: selectAllUsersByCriteria = 连接.prepareStatement( “从用户那里选择*?=?” ); 下面的方法运行该语句: public Array
我有一个白色的 EditText,在 Android 3.1 及更高版本中,光标不显示(因为它也是白色的)。有关信息,我使用 android:background="@android:drawable
我正在尝试使用 Keras 实现深度学习模型。但是我有一个未知形状实现的问题。我一直在寻找类似的错误,但没有找到。 这是我的代码。 Xhome = dataset[:,32:62] Xaway = d
关注此introduction可以通过导入命名空间 System.Xml 来使用 XMLReader 类。在我的 Visual Studio 项目中,我使用 .NET 4.0,但 System.Xml
我有一个动态链接库的程序。该程序将函数指针传递给该库以执行。 但是 ubsan(Undefined Behavior Sanitizer)指定指针位于错误的函数类型上。那只会发生 如果回调函数有一个类
我正在尝试在我的 Swift SpriteKit 应用程序中使用 AVAudioSession。我遇到了奇怪的“未声明类型”问题。例如…… import AVFoundation var audioS
如果在编译期间(在实际编译和运行程序之前)其参数之一的值已知/未知,如何专门化模板函数? 我还不知道怎么做。 想法 1: #include #include int main(void){
我看到一些人的代码是这样的: while (!(baseType == typeof(Object))) { .... baseType = baseType.BaseType;
我正在尝试使用 GoColly 框架获取所有 HREF 链接,但是只允许任何域的 url 为根 URL 或子域(否路径)。我已经注释掉了我的 REGEXP。文件扩展名没有事情。我只是在“/”之后不想要
我有一个包含多个实体的数据库,特别是 Book 和 User。它们之间存在这样的 ManyToMany 关系: 书: @Entity @Table(name = "Books") public cla
如果我将范围的初始部分设置为 Range("A:A"),如何确保将整行传递给排序? 数据 id、fname、mname、lname、后缀、状态、位置、时区 通过在 id 中搜索起点和终点来选择范围。
我对kubernetes很陌生,而对于docker来说就不那么多了。 我一直在研究示例,但是我对自动缩放器(似乎无法缩放)感到困惑。 我在这里通过示例https://kubernetes.io/doc
我在 ChildWindow 中使用 SL Toolkit 5 中的 BusyIndicator 控件。 在某些解决方案中,它可以工作,但在其他解决方案中,使用完全相同的代码(至少看起来),我在运
我是一名优秀的程序员,十分优秀!