gpt4 book ai didi

r - R 中 13 个行索引之间欧氏距离的排列

转载 作者:行者123 更新时间:2023-12-04 10:56:41 24 4
gpt4 key购买 nike

我有 13 个兴趣区 (AOI),每个测试图像都有 x 和 y 值。如何获得成对 AOI 之间欧几里得距离的所有可能组合,((x-xi)+(y-yi))^(1/2)?最终,我正在寻找每个测试图像的两个 AOI 之间所有可能距离的最大距离。

这可以在不使用循环的情况下完成吗?

> setwd("C:/Users/Data/Desktop")
> RawColor <- read.csv(file="13ptColor.csv")
> print(RawColor)
SN TestImage AOI x y
1 50293253 B 13 0.1597 0.06775
2 50293253 B 12 0.1587 0.06574
3 50293253 B 11 0.1596 0.06715
4 50293253 B 10 0.1594 0.06618
5 50293253 B 9 0.1590 0.06582
6 50293253 B 8 0.1593 0.06638
7 50293253 B 7 0.1589 0.06602
8 50293253 B 6 0.1594 0.06601
9 50293253 B 5 0.1591 0.06552
10 50293253 B 4 0.1587 0.06473
11 50293253 B 3 0.1593 0.06603
12 50293253 B 2 0.1585 0.06481
13 50293253 B 1 0.1588 0.06510
14 50293253 G 13 0.2985 0.60400
15 50293253 G 12 0.2977 0.60440

最佳答案

dist() .由于没有提供足够的测试数据,这里是一个关于 iris 的例子:

as.matrix(
by(data = iris[, c('Sepal.Length', 'Sepal.Width')],
INDICES = iris[, 'Species', drop = F],
FUN = function(DF) max(dist(DF))
)
)

# [,1]
# setosa 2.418677
# versicolor 2.332381
# virginica 3.269557

# or
sp_DF <- split(x = iris[, c('Sepal.Length', 'Sepal.Width')],
f = iris[, 'Species', drop = F])

sapply(sp_DF, function(DF) max(dist(DF)))

# setosa versicolor virginica
# 2.418677 2.332381 3.269557

以及 中的类似方法
library(dplyr)

iris%>%
group_by(Species)%>%
summarize(max_dist = max(dist(cbind(Sepal.Length, Sepal.Width))))

# A tibble: 3 x 2
Species max_dist
<fct> <dbl>
1 setosa 2.42
2 versicolor 2.33
3 virginica 3.27

:
library(data.table)
as.data.table(iris)[,
.(max_dist = max(dist(.SD))),
.SDcols = c('Sepal.Length', 'Sepal.Width'),
by = Species]

关于r - R 中 13 个行索引之间欧氏距离的排列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59124035/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com