- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有几个人类事件识别数据的数据文件,由记录的原始样本的时间顺序行组成。每行有 8 列 EMG 传感器数据和 1 列相应的目标传感器数据。我正在尝试将 8 个 channel 的 EMG 传感器数据输入到 CNN+LSTM 深度模型中,以预测目标数据的 1 个 channel 。为此,我将数据集(下图中的 a)分解为 50 行的原始样本窗口(下图中的 b),然后将这些窗口 reshape 为4 个窗口的 block ,作为模型的 LSTM 部分的时间步长(下图中的 c)。希望下图能更好地解释它:
我一直在按照这里的教程学习如何实现我的模型:https://medium.com/smileinnovation/how-to-work-with-time-distributed-data-in-a-neural-network-b8b39aa4ce00
我已经 reshape 了数据并构建了模型,但不断返回以下错误,我无法弄清楚如何解决:
"ValueError: Error when checking target: expected FC_out to have 2 dimensions, but got array with shape (808, 50, 1)"
我的代码如下所示,是使用 Keras 和 Tensorflow 用 Python 编写的:
from keras.models import Sequential
from keras.layers import CuDNNLSTM
from keras.layers.convolutional import Conv2D
from keras.layers.core import Dense, Dropout
from keras.layers import Flatten
from keras.layers import TimeDistributed
#Code that reads in file data and shapes it into 4-window blocks omitted. That code produces the following arrays:
#x_train - shape of (808, 4, 50, 8) which equates to (samples, time steps, window length, number of channels)
#x_valid - shape of (223, 4, 50, 8) which equates to the same as x_train
#y_train - shape of (808, 50, 1) which equates to (samples, window length, number of target channels)
# Followed machine learning mastery style for ease of reading
numSteps = x_train.shape[1]
windowLength = x_train.shape[2]
numChannels = x_train.shape[3]
numOutputs = 1
# Reshape x data for use with TimeDistributed wrapper, adding extra dimension at the end
x_train = x_train.reshape(x_train.shape[0], numSteps, windowLength, numChannels, 1)
x_valid = x_valid.reshape(x_valid.shape[0], numSteps, windowLength, numChannels, 1)
# Build model
model = Sequential()
model.add(TimeDistributed(Conv2D(64, (3,3), activation=activation, name="Conv2D_1"),
input_shape=(numSteps, windowLength, numChannels, 1)))
model.add(TimeDistributed(Conv2D(64, (3,3), activation=activation, name="Conv2D_2")))
model.add(Dropout(0.4, name="CNN_Drop_01"))
# Flatten for passing to LSTM layer
model.add(TimeDistributed(Flatten(name="Flatten_1")))
# LSTM and Dropout
model.add(CuDNNLSTM(28, return_sequences=True, name="LSTM_01"))
model.add(Dropout(0.4, name="Drop_01"))
# Second LSTM and Dropout
model.add(CuDNNLSTM(28, return_sequences=False, name="LSTM_02"))
model.add(Dropout(0.3, name="Drop_02"))
# Fully Connected layer and further Dropout
model.add(Dense(16, activation=activation, name="FC_1"))
model.add(Dropout(0.4)) # For example, for 3 outputs classes
# Final fully Connected layer specifying outputs
model.add(Dense(numOutputs, activation=activation, name="FC_out"))
# Compile model, produce summary and save model image to file
# NOTE: coeffDetermination refers to a function for calculating R2 and is not included in this code
model.compile(optimizer='Adam', loss='mse', metrics=[coeffDetermination])
# Now train the model
history_cb = model.fit(x_train, y_train, validation_data=(x_valid, y_valid), epochs=30, batch_size=64)
如果有人能找出我做错了什么,我将不胜感激。还是我只是以错误的方式尝试使用此模型配置进行时间序列预测?
最佳答案
“ValueError:检查目标时出错:期望 FC_out 具有 2 个维度,但得到形状为 (808, 50, 1) 的数组”
Model: "sequential_10"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
time_distributed_18 (TimeDis (None, 4, 48, 6, 64) 640
_________________________________________________________________
time_distributed_19 (TimeDis (None, 4, 46, 4, 64) 36928
_________________________________________________________________
CNN_Drop_01 (Dropout) (None, 4, 46, 4, 64) 0
_________________________________________________________________
time_distributed_20 (TimeDis (None, 4, 11776) 0
_________________________________________________________________
LSTM_01 (LSTM) (None, 4, 28) 1322160
_________________________________________________________________
Drop_01 (Dropout) (None, 4, 28) 0
_________________________________________________________________
Drop_02 (Dropout) (None, 4, 28) 0
_________________________________________________________________
FC_1 (Dense) (None, 4, 16) 464
_________________________________________________________________
dropout_3 (Dropout) (None, 4, 16) 0
_________________________________________________________________
FC_out (Dense) (None, 4, 1) 17
=================================================================
Total params: 1,360,209
Trainable params: 1,360,209
Non-trainable params: 0
对于具有不同序列长度的多对多序列预测,请查看此链接 https://github.com/keras-team/keras/issues/6063
dataX or input : (nb_samples, nb_timesteps, nb_features) -> (1000, 50, 1)
dataY or output: (nb_samples, nb_timesteps, nb_features) -> (1000, 10, 1)
model = Sequential()
model.add(LSTM(input_dim=1, output_dim=hidden_neurons, return_sequences=False))
model.add(RepeatVector(10))
model.add(LSTM(output_dim=hidden_neurons, return_sequences=True))
model.add(TimeDistributed(Dense(1)))
model.add(Activation('linear'))
model.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy'])
关于python - 使用 CNN+LSTM 模型和 TimeDistributed 层包装器进行 Keras 时间序列预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59902980/
R-CNN、fast R-CNN、faster R-CNN 和 YOLO 在以下方面有什么区别: (1) 同一图像集上的精度 (2) 给定 SAME IMAGE SIZE,运行时间 (3) 支持安卓移
我试图比较 CNN 模型和组合 CNN-SVM 模型进行分类的准确性结果。然而我发现 CNN 模型比 CNN-SVM 组合模型具有更好的准确性。这是正确的还是可能发生? 最佳答案 这取决于很多因素,但
我知道这可能是一个愚蠢的问题,但我对机器学习和人工神经网络有点陌生。 深度卷积神经网络和密集卷积神经网络有什么区别吗? 提前致谢! 最佳答案 密集 CNN 是深度 CNN 的一种,其中每一层都与比自身
我正在使用预训练的 CNN 从图片中提取特征。使用这些特征作为新 CNN/NN 的输入有意义吗?以前做过吗?我很高兴得到答复。 最佳答案 这称为微调。这是非常常用的。通常,我们会删除 VGG 或类似网
与 caffe 合作几个月后,我已经能够成功地训练我自己的模型。例如,比我自己的模型更进一步,我已经能够用 1000 个类来训练 ImageNet。 现在在我的项目中,我试图提取我感兴趣的区域。之后我
我正在使用下面的 LeNet 架构来训练我的图像分类模型,我注意到每次迭代都不会提高训练和验证的准确性。这方面的任何专家都可以解释可能出了什么问题吗? 训练样本 - 属于 2 个类别的 110 张图像
我使用剩余连接实现了以下 CNN,用于在 CIFAR10 上对 10 个类进行分类: class ConvolutionalNetwork(nn.Module): def __init__(se
我有一组二维输入数组 m x n即 A,B,C我必须预测两个二维输出数组,即 d,e我确实有预期值。如果您愿意,您可以将输入/输出视为灰色图像。 由于空间信息是相关的(这些实际上是 2D 物理域)我想
我正在开发一个交通跟踪系统,该系统可以分析已经收集的视频。我正在使用opencv,线程,pytorch和dectron2。为了加快从opencv抓帧的速度,我决定使用Thread,该线程运行一个循环,
我正在解决一个问题,需要我构建一个深度学习模型,该模型必须基于某些输入图像输出另一个图像。值得注意的是,这两个图像在概念上是相关的,但它们没有相同的尺寸。 起初我认为具有最终密集层(其参数是输出图像的
我正在制作一个卷积网络来预测 3 类图像:猫、狗和人。我训练了又训练它,但是当我传递猫图像来预测时,它总是给出错误的输出。我尝试了其他猫的照片,但结果没有改变。对于人和狗来说没有问题,只是对于猫来说。
我接到一项任务,要实现一个卷积神经网络,该网络可以评估 MNIST dataset 中找到的手写数字。网络架构如下所示: 我已经实现了一个与架构相匹配的 CNN,不幸的是它的准确率只有 10% 左右。
我正在尝试在 Keras 中重新创建 CNN 来对点云数据进行分类。 CNN 在 this 中描述。纸。 网络设计 这是我当前的实现: inputs = Input(shape=(None, 3))
我想为有 300 个类的数据集设计 CNN。我已经用以下模型对两个类(class)进行了测试。它具有良好的准确性。 model = Sequential([ Conv2D(16, 3, padding
我成功训练了 CNN 模型,但是当我向模型提供图像以使其预测标签时,出现错误。 这是我的模型(我正在使用 saver.restore 恢复它)... # load dataset mnist = in
我恢复了用于人脸检测的预训练模型,该模型一次获取单个图像并返回边界框。如果这些图像具有不同的尺寸,如何才能获取一批图像? 最佳答案 您可以使用tf.image.resize_images方法来实现这一
我有大约 8200 张图像用于人脸检测任务。其中 4800 个包含人脸。其他 3400 张图像包含 3D 人脸面具(由橡胶/ latex 制成)、卡通人脸、猴子脸的图像。我想检测给定的图像是否包含真实
我有一组合成噪声图像。示例如下: 我还有它们相应的干净文本图像作为我的地面实况数据。下面的例子: 两个图像的尺寸为4918 x 5856。它的大小是否适合训练我的执行图像去噪的卷积神经网络?如果没有,
大家好! 由于我正在尝试制作一个将灰度图像转换为 RGB 图像的全卷积神经网络,所以我想知道是否可以在不同大小的图像(不同的像素和比率)上训练和测试模型。通常你只会下采样或上采样,这是我不想做的。我听
我正在研究 CNN 特征的早期和晚期融合。我从 CNN 的多层中获取了特征。对于早期融合,我捕获了三个不同层的特征,然后水平连接它们 F= [F1' F2' F3']; 对于后期融合,我正在阅读此 p
我是一名优秀的程序员,十分优秀!