- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有由 10 个合奏和 35 个时间文件组成的文件。这些文件之一看起来像:
>>> xr.open_dataset('ens1/CCSM4_ens1_07ic_19820701-19820731_NPac_Jul.nc')
<xarray.Dataset>
Dimensions: (ensemble: 1, latitude: 66, longitude: 191, time: 31)
Coordinates:
* ensemble (ensemble) int32 1
* latitude (latitude) float32 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 ...
* longitude (longitude) float32 100.0 101.0 102.0 103.0 104.0 105.0 106.0 ...
* time (time) datetime64[ns] 1982-07-01 1982-07-02 1982-07-03 ...
Data variables:
u10m (time, latitude, longitude) float64 -1.471 -0.05933 -1.923 ...
Attributes:
CDI: Climate Data Interface version 1.6.5 (http://c...
history: Wed Nov 22 21:54:08 2017: ncks -O -d longitude...
Conventions: CF-1.4
CDO: Climate Data Operators version 1.6.5 (http://c...
nco_openmp_thread_number: 1
NCO: 4.3.7
open_mfdataset
文件沿时间维度连接,整体维度被删除(可能是因为它的大小为 1)?
>>> xr.open_mfdataset('ens*/*NPac*.nc')
<xarray.Dataset>
Dimensions: (latitude: 66, longitude: 191, time: 10850)
Coordinates:
* latitude (latitude) float32 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 ...
* longitude (longitude) float32 100.0 101.0 102.0 103.0 104.0 105.0 106.0 ...
* time (time) datetime64[ns] 1982-07-01 1982-07-02 1982-07-03 ...
Data variables:
u10m (time, latitude, longitude) float64 -1.471 -0.05933 -1.923 ...
merge
做了一个简单的测试如此处所示
Error on using xarray open_mfdataset function但它失败了:
>>> ds = xr.open_mfdataset('ens1/*NPac*')
<xarray.Dataset>
Dimensions: (ensemble: 1, latitude: 66, longitude: 191, time: 1085)
Coordinates:
* ensemble (ensemble) int32 1
* latitude (latitude) float32 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 ...
* longitude (longitude) float32 100.0 101.0 102.0 103.0 104.0 105.0 106.0 ...
* time (time) datetime64[ns] 1982-07-01 1982-07-02 1982-07-03 ...
Data variables:
u10m (time, latitude, longitude) float64 -1.471 -0.05933 -1.923 ...
>>> ds2 = xr.open_mfdataset('ens2/*NPac*')
<xarray.Dataset>
Dimensions: (ensemble: 1, latitude: 66, longitude: 191, time: 1085)
Coordinates:
* ensemble (ensemble) int32 2
* latitude (latitude) float32 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 ...
* longitude (longitude) float32 100.0 101.0 102.0 103.0 104.0 105.0 106.0 ...
* time (time) datetime64[ns] 1982-07-01 1982-07-02 1982-07-03 ...
Data variables:
u10m (time, latitude, longitude) float64 3.992 2.099 -0.3162 ...
>>> ds3 = xr.merge([ds, ds2])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/nethome/rxb826/local/bin/miniconda3/lib/python3.6/site-packages/xarray/core/merge.py", line 513, in merge
variables, coord_names, dims = merge_core(dict_like_objects, compat, join)
File "/nethome/rxb826/local/bin/miniconda3/lib/python3.6/site-packages/xarray/core/merge.py", line 432, in merge_core
variables = merge_variables(expanded, priority_vars, compat=compat)
File "/nethome/rxb826/local/bin/miniconda3/lib/python3.6/site-packages/xarray/core/merge.py", line 166, in merge_variables
merged[name] = unique_variable(name, variables, compat)
File "/nethome/rxb826/local/bin/miniconda3/lib/python3.6/site-packages/xarray/core/merge.py", line 85, in unique_variable
% (name, out, var))
xarray.core.merge.MergeError: conflicting values for variable 'u10m' on objects to be combined:
first value: <xarray.Variable (time: 1085, latitude: 66, longitude: 191)>
dask.array<shape=(1085, 66, 191), dtype=float64, chunksize=(31, 66, 191)>
Attributes:
long_name: 10m U component of wind
units: m s**-1
second value: <xarray.Variable (time: 1085, latitude: 66, longitude: 191)>
dask.array<shape=(1085, 66, 191), dtype=float64, chunksize=(31, 66, 191)>
Attributes:
long_name: 10m U component of wind
units: m s**-1
最佳答案
xarray.open_mfdataset
不支持二维合并。您需要做的是使用 concat
沿着第二个维度:
import os
import xarray as xr
ens_list = []
for num in range(1, 11):
ens = 'ens%d' % num
ens_list.append(xr.open_mfdataset(os.path.join(ens, '*NPac*')))
ds = xr.concat(ens_list, dim='ensemble')
关于dask - python-xarray:open_mfdataset 沿二维连接,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47545138/
假设我有以下二维数组 >>> import numpy as np >>> budgets = np.array([ [np.nan, 450.], [500. , 10
我正在尝试读取单个 WRF 的时间序列输出变量。时间序列是分布式的,每个文件一个时间戳,跨越 5000 多个 netCDF 文件。每个文件包含大约 200 个变量。 有没有办法只为我感兴趣的变量调用
我有一个相当大的 xr.Dataset,其中包含大约 20 个数据变量。我只对保留其中两个感兴趣。我看到 xr.Dataset.drop带有数据集的删除变量。 我正在寻找保留变量的语法。我尝试了 f[
我正在尝试计算 xarray 数据集中时间维度子集的每月气候。时间是使用 datetime64 定义的。 如果我想使用整个时间序列,这很好用: monthly_avr=ds_clm.groupby('
我有一个空间数据的 pandas 数据框,我想将其转换为 netCDF。我找到了 xarray 并将我的数据帧转换为 xarray 数据集的方法: # create xray Dataset from
我有一个名为 rio 的 DataArray 对象。 In [59]: rio Out[59]: array([[[0, 0, ..., 0, 0], [0, 0, ..., 0,
我目前正在尝试将一个大的多维数组 (>5 GB) 加载到 python 脚本中。由于我将数组用作机器学习模型的训练数据,因此以小批量高效加载数据非常重要,但要避免将整个数据集加载到内存中一次。 我的想
假设我有一个 dataset类型 xarray.Dataset .我有一个名为 name 的维度,(由 DataArray 中的所有 Dataset 共享,但我认为这对这个问题并不重要,)我想选择一个
我想读入 https://hrrrzarr.s3.amazonaws.com/index.html#sfc/20210208/20210208_00z_anl.zarr/ 的远程 zarr 存储。 z
我想获取栅格(卫星图像)数据,并构建一个Dataset 或DataArray,以加快我的图像处理速度(我必须处理多-波段,多日期卫星图像很多)。 数据来自每个图像日期的单独波段,我了解如何将每个波段日
所以我有 3 个 netcdf4 文件(每个大约 90 MB),我想使用包 xarray 将它们连接起来。每个文件都有一个变量 (dis),以 0.5 度分辨率(纬度、经度)表示 365 天(时间)。
对于我的数据数组,我有坐标经度、纬度和时间。我只想沿纬度反转数组,以便 [90, 85, ..., -85, -90]变成 [-90, -80, ..., 85, 90] . 最佳答案 同意@jham
完成 MetPy 横截面示例后,我尝试将该示例推广到 NCEP NAM-12km GRIB2 文件,但未成功。通过将我的文件的 DataArray 与示例文件(netCDF 文件)进行比较,我发现 x
我正在使用 xarray.apply_ufunc() 将函数应用于 xarray.DataArray .它适用于某些 NetCDF,但在尺寸、坐标等方面似乎具有可比性的其他 NetCDF 会失败。但是
是否也可以创建一个核外 DataArray,并使用 xarray 将其逐块写入 NetCDF4 文件? 例如,当维度更大时,我希望能够以核外方式执行此操作,因此我无法将整个数组存储在内存中: num_
我有一个数据数组arr,坐标为“时间”。到达: array([244.40161, 244.39998, ..., 244.40936, 244.40549], dtype=float32)
我有一个数据数组arr,坐标为“时间”。到达: array([244.40161, 244.39998, ..., 244.40936, 244.40549], dtype=float32)
我是新手,我使用的是XARRAY。我的netcdf文件包含时间为‘天数自0001-01-01 00:00:00’的数据,日历类型为Julian。有谁知道将时间转换成标准日历的简单方法吗?。提前感谢:)
我是新手,我使用的是XARRAY。我的netcdf文件包含时间为‘天数自0001-01-01 00:00:00’的数据,日历类型为Julian。有谁知道将时间转换成标准日历的简单方法吗?。提前感谢:)
我是新手,我使用的是XARRAY。我的netcdf文件包含时间为‘天数自0001-01-01 00:00:00’的数据,日历类型为Julian。有谁知道将时间转换成标准日历的简单方法吗?。提前感谢:)
我是一名优秀的程序员,十分优秀!