gpt4 book ai didi

r - 使用拐点包找到 COVID-19 感染的转折点(拐点)

转载 作者:行者123 更新时间:2023-12-04 10:34:25 30 4
gpt4 key购买 nike

我看过几个关于拐点计算的问题。我仍然不确定我是否做得对。根据实验室确认的当前疫情中心的累计病例数据,我们试图确定拐点。我用了 inflection包装并计算拐点为“08 Feb 2020”。我还尝试计算第一个和第二个指令作为估计的增加和变化率。我对它的数学理解很少,但只是遵循不同 SO 帖子中的示例。我的问题:下图中的结果是否一致?如果不是如何改进我的代码。

df<-structure(list(date = structure(c(18277, 18278, 18279, 18280, 
18281, 18282, 18283, 18284, 18285, 18286, 18287, 18288, 18289,
18290, 18291, 18292, 18293, 18294, 18295, 18296, 18297, 18298,
18299, 18300, 18301, 18302, 18303, 18304, 18305, 18306, 18307),
class = "Date"),
cases = c(45, 62, 121, 198, 258, 363, 425,
495, 572, 618, 698, 1590, 1905, 2261, 2639, 3125, 4109, 5142,
6384, 8351, 10117, 11618, 13603, 14982, 16903, 18454, 19558,
20630, 21960, 22961, 23621)),
class = "data.frame", row.names = c(NA, -31L))
xlb_0<- structure(c(18281, 18285, 18289, 18293,
18297, 18301, 18305,
18309), class = "Date")
library(tidyverse)
# Smooth cumulative cases over time
df$x = as.numeric(df$date)
fit_1<- loess(cases ~ x, span = 1/3, data = df)
df$case_sm <-fit_1$fitted

# use inflection to obtain inflection point
library(inflection)
guai_0 <- check_curve(df$x, df$case_sm)
check_curve(df$x, df$cases)
#> $ctype
#> [1] "convex_concave"
#>
#> $index
#> [1] 0
guai_1 <- bese(df$x, df$cases, guai_0$index)
structure(guai_1$iplast, class = "Date")
#> [1] "2020-02-08"

# Plot cumulativew numbers of cases
df %>%
ggplot(aes(x = date, y = cases ))+
geom_line(aes(y = case_sm), color = "red") +
geom_point() +
geom_vline(xintercept = guai_1$iplast) +
labs(y = "Cumulative lab confirmed infections")



# Daily new cases (first derivative) and changing rate (second derivative)
df$dt1 = c(0, diff(df$case_sm)/diff(df$x))
fit_2<- loess(dt1 ~ x, span = 1/3, data = df)
df$change_sm <-fit_2$fitted
df$dt2 <- c(NA, diff(df$change_sm)/diff(df$x))

df %>%
ggplot(aes(x = date, y = dt1))+
geom_line(aes(y = dt1,
color = "Estimated number of new cases")) +
geom_point(aes(y = dt2*2, color = "Changing rate")) +
geom_line(aes(y = dt2*2, color = "Changing rate"))+
geom_vline(xintercept = guai_1$iplast) +
labs(y = "Estimatede number of new cases") +
scale_x_date(breaks = xlb_0,
date_labels = "%b%d") +
theme(legend.title = element_blank())
#> Warning: Removed 1 rows containing missing values (geom_point).
#> Warning: Removed 1 row(s) containing missing values (geom_path).



创建于 2020-02-17 由 reprex package (v0.3.0)

最佳答案

我本来想写评论,但我正在插入字符数限制。

我不熟悉 inflection包所以我不是来判断的2020-02-08是真正的拐点。但是,我会说这很难用 R 来回答,因为 R 不一定擅长计算导数。如果您有一个估计的线方程 - 那么您可能会使用它来绘制一阶和二阶导数。通过做 (Y_n+1-Y_n)/(X_n+1-X_n) 中的差异来计算粗略的 delta 值永远不会是最优的,因为 derivate理论上是两个无限接近的点的增量。您从根本上无法对导数进行很好的估计。您甚至可以看到这一点,因为您不得不将此估计值转移到 nn+1 .此外,您会期望 x_0 的拐点在一阶导数中为局部最小值/最大值,在二阶导数中为零。所以我认为你的第二个情节没有帮助。但这可能只是由于 delta 的计算。

我要做的是首先将您的数据适合某种类型的模型。
在这个例子中,我将使用包 dr4pl将您的数据建模为 4 参数逻辑模型。
由于 4 参数模型的函数是众所周知的,我可以写出一阶和二阶导数函数应该是什么,然后使用 stat_function 绘制这些值在 ggplot2包裹。

library(ggplot2)
library(dr4pl)
df<-structure(list(date = structure(c(18277, 18278, 18279, 18280,
18281, 18282, 18283, 18284, 18285, 18286, 18287, 18288, 18289,
18290, 18291, 18292, 18293, 18294, 18295, 18296, 18297, 18298,
18299, 18300, 18301, 18302, 18303, 18304, 18305, 18306, 18307),
class = "Date"),
cases = c(45, 62, 121, 198, 258, 363, 425,
495, 572, 618, 698, 1590, 1905, 2261, 2639, 3125, 4109, 5142,
6384, 8351, 10117, 11618, 13603, 14982, 16903, 18454, 19558,
20630, 21960, 22961, 23621)),
class = "data.frame", row.names = c(NA, -31L))
xlb_0<- structure(c(18281, 18285, 18289, 18293,
18297, 18301, 18305,
18309), class = "Date")

df$dat_as_num <- as.numeric(df$date)

dr4pl_obj <- dr4pl(cases~dat_as_num, data = df, init.parm = c(30000, 18300, 2, 0))
#first derivative derivation
d1_dr4pl <- function(x, theta, scale = F){
if (any(is.na(theta))) {
stop("One of the parameter values is NA.")
}
if (theta[2] <= 0) {
stop("An IC50 estimate should always be positive.")
}
f <- -theta[3]*((theta[4]-theta[1])/((1+(x/theta[2])^theta[3])^2))*((x/theta[2])^(theta[3]-1))
if(scale) {
f <- scales::rescale(x = f, to = c(theta[4],theta[1]))
}
return(f)
}
#Second derivative derivation
d2_dr4pl <- function(x, theta, scale = F){
if (any(is.na(theta))) {
stop("One of the parameter values is NA.")
}
if (theta[2] <= 0) {
stop("An IC50 estimate should always be positive.")
}
f <- 2*((theta[3]*(x/theta[2])^(theta[3]-1))^2)*((theta[4]-theta[1])/((1+(x/theta[2])^(theta[3]))^3))-theta[3]*(theta[3]-1)*((x/theta[2])^(theta[3]-2))*((theta[4]-theta[1])/((1+(x/theta[2])^theta[3])^2))
if(scale) {
f <- scales::rescale(x = f, to = c(theta[4],theta[1]))
f <- f - f[1]
}
return(f)
}

ggplot(df, aes(x = dat_as_num)) +
geom_hline(yintercept = 0) +
[![enter image description here][1]][1]geom_point(aes(y = cases), color = "grey", alpha = .6, size = 5) +
stat_function(fun = d1_dr4pl, args = list(theta = dr4pl_obj$parameters, scale = T), color = "red") +
stat_function(fun = d2_dr4pl, args = list(theta = dr4pl_obj$parameters, scale = T), color = "blue") +
stat_function(fun = dr4pl::MeanResponse, args = list(theta = dr4pl_obj$parameters), color = "gold") +
geom_vline(xintercept = dr4pl_obj$parameters[2], linetype = "dotted") +
theme_classic()

dr4pl fitted curve in yellow, "scaled" first derivative in red, "scaled" second derivative in blue

如您所见,拐点,即 4 参数逻辑模型的 IC50 值 (theta 2),当我们以这种方式接近时,排列得很好。
summary(dr4pl_obj)
#$call
#dr4pl.formula(formula = cases ~ dat_as_num, data = df, init.parm = c(30000, 18300, 2, 0))
#
#$coefficients
# Estimate StdErr 2.5 % 97.5 %
#Upper limit 25750.61451 4.301008e-05 25750.59681 25750.63221
#Log10(IC50) 18298.75347 4.301008e-09 18298.67889 18298.82806
#Slope 5154.35449 4.301008e-05 5154.33678 5154.37219
#Lower limit 58.48732 4.301008e-05 58.46962 58.50503
#
#attr(,"class")
#[1] "summary.dr4pl"

此外,使用 dr4pl ,它说 IC50 值大约是 18298.8 , 晚了 2020-02-06 .离 inflection 不远值(value)。我确信可能有比 4pl 更好的模型可以使用,但我知道我可以编写一阶和二阶导数来回答这个问题。

我相信其他编码语言在涉及导数时更专业,甚至可以为您计算它们,只要您从初始函数开始。我认为其中一种语言是 mathematica。

A 免责声明 ,我最终缩放了一阶和二阶导数,以便将它们绘制在一起。它们的实际值比此处显示的要大得多。

关于r - 使用拐点包找到 COVID-19 感染的转折点(拐点),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60254870/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com