- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试创建北美 map 的 voronoi 图,这意味着根据其首都的位置有效地将国家切成碎片。为此,我使用 Geopandas 获取北美的地理数据,然后使用 GeoVoronoi 库创建一个 Voronoi 图:
import matplotlib.pyplot as plt
import geopandas as gpd
from shapely.ops import cascaded_union
from geovoronoi.plotting import subplot_for_map, plot_voronoi_polys_with_points_in_area
from geovoronoi import voronoi_regions_from_coords, points_to_coords
logging.basicConfig(level=logging.INFO)
geovoronoi_log = logging.getLogger('geovoronoi')
geovoronoi_log.setLevel(logging.INFO)
geovoronoi_log.propagate = True
#
# load geo data
#
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
cities = gpd.read_file(gpd.datasets.get_path('naturalearth_cities'))
# focus on South America, convert to World Mercator (unit: meters)
north_am = world[world.continent == 'North America'].to_crs(epsg=3395)
cities = cities.to_crs(north_am.crs) # convert city coordinates to same CRS!
# create the bounding shape as union of all South American countries' shapes
north_am_shape = cascaded_union(north_am.geometry)
north_am_cities = cities[cities.geometry.within(north_am_shape)] # reduce to cities in South America
#
# calculate the Voronoi regions, cut them with the geographic area shape and assign the points to them
#
# convert the pandas Series of Point objects to NumPy array of coordinates
coords = points_to_coords(north_am_cities.geometry)
# calculate the regions
poly_shapes, pts, poly_to_pt_assignments = voronoi_regions_from_coords(coords, north_am_shape)
#
# Plotting
#
fig, ax = subplot_for_map()
plot_voronoi_polys_with_points_in_area(ax, north_am_shape, poly_shapes, pts)
ax.set_title('Cities data for South America from GeoPandas\nand Voronoi regions around them')
plt.tight_layout()
plt.savefig('using_geopandas.png')
plt.show()
最佳答案
您收到的错误是由于您正在提取的城市信息中包含的北美城市很少,或者它们没有被正确识别为在北美范围内。您的问题是关于创建基于大写的 Voronoi 图,所以我包含了 a link to a data set for US capitals以便您可以使用可靠数量的城市测试示例:
import matplotlib.pyplot as plt
import numpy as np
import geopandas as gpd
from geovoronoi.plotting import subplot_for_map, plot_voronoi_polys_with_points_in_area
from geovoronoi import voronoi_regions_from_coords
cities = gpd.read_file('us-state-capitals.csv')
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
usa = world[world.name == 'United States of America']
usa = usa.to_crs(epsg=3857)
usa_shape = usa.iloc[0].geometry
coords = np.array(list(zip(cities.Shape_X,cities.Shape_Y)), dtype='float')
poly_shapes, pts, poly_to_pt_assignments = voronoi_regions_from_coords(coords, usa_shape)
fig, ax = subplot_for_map()
plot_voronoi_polys_with_points_in_area(ax, usa_shape, poly_shapes, coords)
ax.set_title('Cities data for South America from GeoPandas\nand Voronoi regions around them')
plt.tight_layout()
plt.savefig('using_geopandas.png')
plt.show()
import matplotlib.pyplot as plt
import geopandas as gpd
from shapely.ops import cascaded_union
from geovoronoi.plotting import subplot_for_map, plot_voronoi_polys_with_points_in_area
from geovoronoi import voronoi_regions_from_coords, points_to_coords
cities = gpd.read_file('world_populated_cities.csv')
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
na = world[world.continent == 'North America']
na = na.to_crs(epsg=3857)
cities.geometry.to_crs(epsg=3857)
na_shape = cascaded_union(na.geometry)
cities = cities.to_crs(na.crs) # convert city coordinates to same CRS!
cities = cities[cities.geometry.within(na_shape)]
coords = points_to_coords(cities.geometry)
poly_shapes, pts, poly_to_pt_assignments = voronoi_regions_from_coords(coords, na_shape)
fig, ax = subplot_for_map()
plot_voronoi_polys_with_points_in_area(ax, na_shape, poly_shapes, coords)
ax.set_title('Cities data for South America from GeoPandas\nand Voronoi regions around them')
plt.tight_layout()
plt.savefig('using_geopandas.png')
plt.show()
关于python - 将北美分成几部分,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60470648/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!