- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 df
与 5
变量,
头(df,15)
junc N1.ir N2.ir W1.ir W2.ir W3.ir
1 pos$chr1:3197398 0.000000 0.000000 0.000000 0.000000 0.000000
2 pos$chr1:3207049 0.000000 0.000000 0.000000 0.000000 0.000000
3 pos$chr1:3411982 0.000000 0.000000 0.000000 0.000000 0.000000
4 pos$chr1:4342162 0.000000 0.000000 0.000000 0.000000 0.000000
5 pos$chr1:4342918 0.000000 0.000000 0.000000 0.000000 0.000000
6 pos$chr1:4767729 -4.369234 -5.123382 -4.738768 -4.643856 -5.034646
7 pos$chr1:4772814 -3.841302 -3.891419 -4.025029 -3.643856 -3.184425
8 pos$chr1:4798063 -5.038919 -4.847997 -5.497187 -4.035624 -7.543032
9 pos$chr1:4798567 -4.735325 -5.096862 -3.882643 -3.227069 -4.983808
10 pos$chr1:4818730 -8.366322 -7.118941 -8.280771 -6.629357 -6.876517
11 pos$chr1:4820396 -5.514573 -6.330917 -5.898853 -4.700440 -5.830075
12 pos$chr1:4822462 -5.580662 -6.914883 -5.562242 -5.380822 -5.703211
13 pos$chr1:4827155 -4.333273 -4.600904 -4.133399 -4.012824 -3.708345
14 pos$chr1:4829569 -4.287866 -3.874469 -3.977280 -4.209453 -4.490326
15 pos$chr1:4857613 -6.902074 -6.074141 -6.116864 -3.989946 -6.474259
melt
> head(ir.m)
junc variable value
1 pos$chr1:3197398 N1.ir 0.000000
2 pos$chr1:3207049 N1.ir 0.000000
3 pos$chr1:3411982 N1.ir 0.000000
4 pos$chr1:4342162 N1.ir 0.000000
5 pos$chr1:4342918 N1.ir 0.000000
6 pos$chr1:4767729 N1.ir -4.369234
> summary(ir)
junc N1.ir N2.ir W1.ir
neg$chr1:100030088: 1 Min. :-11.962 Min. :-12.141 Min. :-11.817
neg$chr1:100039873: 1 1st Qu.: -4.379 1st Qu.: -4.217 1st Qu.: -4.158
neg$chr1:10023338 : 1 Median : -2.807 Median : -2.663 Median : -2.585
neg$chr1:10024088 : 1 Mean : -2.556 Mean : -2.434 Mean : -2.362
neg$chr1:10025009 : 1 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.000
neg$chr1:10027750 : 1 Max. : 17.708 Max. : 16.162 Max. : 16.210
(Other) :113310
W2.ir W3.ir
Min. :-12.194 Min. :-11.880
1st Qu.: -3.078 1st Qu.: -4.087
Median : -1.000 Median : -2.711
Mean : -1.577 Mean : -2.370
3rd Qu.: 0.000 3rd Qu.: 0.000
Max. : 17.562 Max. : 16.711
ggplot
绘制累积概率图和
stat_ecdf
,
ggplot(ir.m, aes(x=value)) + stat_ecdf(aes(group=variable,colour = variable))
ir.d = as.data.frame(ir.m)
denss = split(ir.d, ir.d$variable) %>%
map_df(function(dw) {
denss = density(dw$value, from=min(ir.d$value) - 0.05*diff(range(ir.d$value)),
to=max(ir.d$value) + 0.05*diff(range(ir.d$value)))
data.frame(x=denss$x, y=denss$y, cd=cumsum(denss$y)/sum(denss$y), group=dw$variable[1])
head(denss)
})
summary(denss)
> summary(denss)
x y cd group
Min. :-13.689 Min. :0.0000000 Min. :0.00000 N1.ir:512
1st Qu.: -5.466 1st Qu.:0.0000046 1st Qu.:0.07061 N2.ir:512
Median : 2.757 Median :0.0002487 Median :0.99552 W1.ir :512
Mean : 2.757 Mean :0.0303942 Mean :0.65315 W2.ir :512
3rd Qu.: 10.980 3rd Qu.:0.0148074 3rd Qu.:0.99997 W3.ir :512
Max. : 19.203 Max. :0.9440592 Max. :1.00000
ggplot() +
stat_ecdf(data=ir.d, aes(x, colour=variable), alpha=0.8) +
geom_line(data=denss, aes(x, cd, colour=group)) +
theme_classic()
最佳答案
ecdf 完全遵循数据,没有任何平滑。但是,您可以通过从数据生成内核密度估计(基本上是平滑直方图)并从中创建“ecdf”来创建平滑累积密度。下面是一个假数据的例子:
首先,我们使用 density
生成内核密度估计。功能。默认情况下,这为我们提供了对 512 个 x 值网格的密度估计。然后我们将其用作计算 ecdf 的“数据”,它只是密度的累积总和(或者,对于沿 x 轴的任何给定点 a,a 处的 ecdf 值是核密度下的面积曲线(即从 -Inf 到 a 的积分)。
我已将代码打包到下面的函数中,以便您了解如何更改 adjust
密度函数的参数改变平滑的 ecdf。 adjust
的较小值减少平滑量,创建更接近数据的密度估计。您可以在下图中看到该设置 adj=0.1
导致平滑 ecdf 的平滑度降低,因此它更接近原始 ecdf 中的步骤。
library(ggplot2)
smooth_ecd = function(adj = 1) {
# Fake data
set.seed(2)
dat = data.frame(x=rnorm(15))
# Extend range of density estimate beyond data
e = 0.3 * diff(range(dat$x))
# Kernel density estimate of fake data
dens = density(dat$x, adjust=adj, from=min(dat$x)-e, to=max(dat$x) +e)
dens = data.frame(x=dens$x, y=dens$y)
# Plot kernel density (blue), ecdf (red) and smoothed ecdf (black)
ggplot(dat, aes(x)) +
geom_density(adjust=adj, colour="blue", alpha=0.7) +
geom_line(data=dens, aes(x=x, y=cumsum(y)/sum(y)), size=0.7, colour='grey30') +
stat_ecdf(colour="red", size=0.6, alpha=0.6) +
theme_classic() +
labs(title=paste0("adj=",adj))
}
smooth_ecd(adj=1)
smooth_ecd(adj=0.3)
smooth_ecd(adj=0.1)
library(tidyverse)
# Fake data with two groups
set.seed(2)
dat = data.frame(x=c(rnorm(15, 0, 1), rnorm(20, 0.2, 0.8)),
group=rep(LETTERS[1:2], c(15,20)))
# Split the data by group and calculate the smoothed cumulative density for each group
dens = split(dat, dat$group) %>%
map_df(function(d) {
dens = density(d$x, adjust=0.1, from=min(dat$x) - 0.05*diff(range(dat$x)),
to=max(dat$x) + 0.05*diff(range(dat$x)))
data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), group=d$group[1])
})
stat_ecdf
的调用。与原始数据进行比较。
ggplot() +
stat_ecdf(data=dat, aes(x, colour=group), alpha=0.8, lty="11") +
geom_line(data=dens, aes(x, cd, colour=group)) +
theme_classic()
# Melt data
dat = gather(df, variable, value, -junc)
# Split the data by group and calculate the smoothed cumulative density for each group
dens = split(dat, dat$variable) %>%
map_df(function(d) {
dens = density(d$value, adjust=0.1, from=min(dat$value) - 0.05*diff(range(dat$value)),
to=max(dat$value) + 0.05*diff(range(dat$value)))
data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), group=d$variable[1])
})
ggplot() +
stat_ecdf(data=dat, aes(value, colour=variable), alpha=0.8, lty="11") +
geom_line(data=dens, aes(x, cd, colour=group)) +
theme_classic()
关于r - 如何平滑 r 中的 ecdf 图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48100458/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!