gpt4 book ai didi

R - 每个文档的文章之间的相关性

转载 作者:行者123 更新时间:2023-12-04 10:26:31 25 4
gpt4 key购买 nike

我尝试计算文章之间的相关性,以了解不同文章编号一起出现在文档(发票)中的频率。

我有一个来自 SQL 查询的表,其中包含两列:文档编号、文章编号
该表非常大,有 21k 行。

我有 5k 个文档编号和 700 篇不同的文章,如下所示的示例。
它是一个数据框“db_belege”。

    Document Number Article Number
1 14198915 00115027
2 14198915 00100288
3 14198915 00011754
4 14198917 00033908
5 14198917 00096478
6 14198917 00033835
7 14198917 00051912
8 14198917 00152477
9 14198917 00033831
10 14198917 00100279
11 14198917 00011754
... 14198924 00053366
5k 14200000 00053366

我的目的是创建一个表,其中包含行的文档和列的文章。我通过以下 r 代码为此准备了一个空矩阵:
#create distinct article list
db_dist_art <- dbFetch(dbSendQuery(conant, "SELECT DISTINCT [Artikelnummer] FROM documenttable WHERE conditions "))

#Number of aticles
dim(db_dist_art)[1]

#create distint document numbers list
db_dist_art <- dbFetch(dbSendQuery(conant, "SELECT DISTINCT [Belegnummer] FROM documenttable WHERE conditions "))

#Number of documents
dim(db_dist_bel)[1]

mat <- matrix(,dim(db_dist_bel)[1],dim(db_dist_art)[1])


这将生成请求的行和列的列表。

1/我现在如何根据 db_dist_art 和 db_dist_bel 命名列和行?

2/是否可以使用行和列指定来分配值?

我的目标是我将能够使用 cor() 函数。

3/或者还有另一种我在研究中没有找到的更容易的方法吗?

(如果可用,请引用相应的解决方案。由于一项研究,我是这个主题的新手,不确定我是否已经找到了正确的搜索词,但在问我的第一个问题之前,我搜索了很多。)

我的基于回复的解决方案

#First of all thank you very much for your awnser. the 2nd solution works without trouble. But i have issues to get the first one running below my adaption and results.
#straghtforward way from JBGruber

#Load/Install packages
library(DBI)
library(odbc)

#Establish connection
conant <- DBI::dbConnect(odbc::odbc(),
Driver = "ODBC Driver 17 for SQL Server",
Server = "Serveradress",
Database = "databasename",
encoding = "latin1",
Trusted_Connection = "yes")

#extract data for correlation

cordata <- dbSendQuery(conant, "SELECT [Belegnummer] as 'Document_Number' ,[Artikelnummer] as 'Article_Number' FROM tablename WHERE conditions ")
db_cordata <- dbFetch(cordata,)
dbClearResult(cordata)

#calculate correlation and store results in cor_result
library(tidyverse)
library(widyr)

cor_result <- db_cordata %>%
pairwise_cor(Article_Number, Document_Number, upper = FALSE)



仍然与相关矩阵和 cor() 函数斗争

#to use cor():
#my adaption below, I had values 1 and "NULL" instead of NA so I adapted also the replace statement to the following below:

library(tidyverse)
mat <- db_cordata %>%
mutate(value = 1) %>%
pivot_wider(id_cols = Document_Number, names_from = Article_Number) %>%
{
mat <- as.matrix(.[, -1])
rownames(mat) <- unlist(.[, 1])
mat
} %>%
replace(.,. == "NULL", 0)

# the matrix created seems to be correct. The values are 1 or 0 now. type duoble


#when i execute:
mat %>%
cor()

#it result in this issue
Fehler in cor(.) : 'x' must be numeric

#But double is numeric as far as i know. but the cor() return an error.
#a strange thing appear for me in this solution. When i hit mat in the Envirionment register > area "Data" this result in a View(mat) command in the console and display a List [50043 x 743]; List of length 3746949 and the valies are double[1] with 0 or 1
#by running the same command in console manually i receive the following: list[3746950] List of length 3746950 (so one more) with the values double[1] with 1 and NULL with Pairlist of length 0.
#why is it handled differently? I guess this is the reason for the issue with cor().

#when i just call 'mat' it display the matric correctly with 0 instead of "NULL".
mat

我想知道它是否是 R Studio 的错误。

最佳答案

如果你想把数据变成正确的格式来使用 cor ,我们可以使用 tidyrpivot_wider然后转换成矩阵:

library(tidyverse)
mat <- df %>%
mutate(value = 1) %>%
pivot_wider(id_cols = Document_Number, names_from = Article_Number) %>%
{
mat <- as.matrix(.[, -1])
rownames(mat) <- unlist(.[, 1])
mat
} %>%
replace(is.na(.), 0)

mat %>%
cor()
#> 115027 100288 11754 33908 96478 33835
#> 115027 1.0000000 1.0000000 0.5773503 -0.3333333 -0.3333333 -0.3333333
#> 100288 1.0000000 1.0000000 0.5773503 -0.3333333 -0.3333333 -0.3333333
#> 11754 0.5773503 0.5773503 1.0000000 0.5773503 0.5773503 0.5773503
#> 33908 -0.3333333 -0.3333333 0.5773503 1.0000000 1.0000000 1.0000000
#> 96478 -0.3333333 -0.3333333 0.5773503 1.0000000 1.0000000 1.0000000
#> 33835 -0.3333333 -0.3333333 0.5773503 1.0000000 1.0000000 1.0000000
#> 51912 -0.3333333 -0.3333333 0.5773503 1.0000000 1.0000000 1.0000000
#> 152477 -0.3333333 -0.3333333 0.5773503 1.0000000 1.0000000 1.0000000
#> 33831 -0.3333333 -0.3333333 0.5773503 1.0000000 1.0000000 1.0000000
#> 100279 -0.3333333 -0.3333333 0.5773503 1.0000000 1.0000000 1.0000000
#> 53366 -0.5773503 -0.5773503 -1.0000000 -0.5773503 -0.5773503 -0.5773503
#> 51912 152477 33831 100279 53366
#> 115027 -0.3333333 -0.3333333 -0.3333333 -0.3333333 -0.5773503
#> 100288 -0.3333333 -0.3333333 -0.3333333 -0.3333333 -0.5773503
#> 11754 0.5773503 0.5773503 0.5773503 0.5773503 -1.0000000
#> 33908 1.0000000 1.0000000 1.0000000 1.0000000 -0.5773503
#> 96478 1.0000000 1.0000000 1.0000000 1.0000000 -0.5773503
#> 33835 1.0000000 1.0000000 1.0000000 1.0000000 -0.5773503
#> 51912 1.0000000 1.0000000 1.0000000 1.0000000 -0.5773503
#> 152477 1.0000000 1.0000000 1.0000000 1.0000000 -0.5773503
#> 33831 1.0000000 1.0000000 1.0000000 1.0000000 -0.5773503
#> 100279 1.0000000 1.0000000 1.0000000 1.0000000 -0.5773503
#> 53366 -0.5773503 -0.5773503 -0.5773503 -0.5773503 1.0000000
widyr 提供了一种更加直接的方式。包虽然:
library(widyr)
df %>%
pairwise_cor(Article_Number, Document_Number, upper = FALSE)
#> # A tibble: 55 x 3
#> item1 item2 correlation
#> <int> <int> <dbl>
#> 1 115027 100288 1
#> 2 115027 11754 0.577
#> 3 100288 11754 0.577
#> 4 115027 33908 -0.333
#> 5 100288 33908 -0.333
#> 6 11754 33908 0.577
#> 7 115027 96478 -0.333
#> 8 100288 96478 -0.333
#> 9 11754 96478 0.577
#> 10 33908 96478 1
#> # … with 45 more rows

数据
df <- structure(list(Document_Number = c(14198915L, 14198915L, 14198915L, 
14198917L, 14198917L, 14198917L, 14198917L, 14198917L, 14198917L,
14198917L, 14198917L, 14198924L, 14200000L), Article_Number = c(115027L,
100288L, 11754L, 33908L, 96478L, 33835L, 51912L, 152477L, 33831L,
100279L, 11754L, 53366L, 53366L)), class = "data.frame", row.names = c(NA,
-13L))

关于R - 每个文档的文章之间的相关性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60620697/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com