gpt4 book ai didi

python - 如何将 numba 与 functools.reduce() 一起使用

转载 作者:行者123 更新时间:2023-12-04 10:26:09 26 4
gpt4 key购买 nike

我有以下代码,我尝试使用 numba 并行循环, functools.reduce()mul :

import numpy as np
from itertools import product
from functools import reduce
from operator import mul
from numba import jit, prange

lst = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
arr = np.array(lst)
n = 3
flat = np.ravel(arr).tolist()
gen = np.array([list(a) for a in product(flat, repeat=n)])

@jit(nopython=True, parallel=True)
def mtp(gen):
results = np.empty(gen.shape[0])
for i in prange(gen.shape[0]):
results[i] = reduce(mul, gen[i], initializer=None)
return results
mtp(gen)

但这给了我一个错误:
---------------------------------------------------------------------------
TypingError Traceback (most recent call last)
<ipython-input-503-cd6ef880fd4a> in <module>
10 results[i] = reduce(mul, gen[i], initializer=None)
11 return results
---> 12 mtp(gen)

~\Anaconda3\lib\site-packages\numba\dispatcher.py in _compile_for_args(self, *args, **kws)
399 e.patch_message(msg)
400
--> 401 error_rewrite(e, 'typing')
402 except errors.UnsupportedError as e:
403 # Something unsupported is present in the user code, add help info

~\Anaconda3\lib\site-packages\numba\dispatcher.py in error_rewrite(e, issue_type)
342 raise e
343 else:
--> 344 reraise(type(e), e, None)
345
346 argtypes = []

~\Anaconda3\lib\site-packages\numba\six.py in reraise(tp, value, tb)
666 value = tp()
667 if value.__traceback__ is not tb:
--> 668 raise value.with_traceback(tb)
669 raise value
670

TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Invalid use of Function(<built-in function reduce>) with argument(s) of type(s): (Function(<built-in function mul>), array(int32, 1d, C), initializer=none)
* parameterized
In definition 0:
AssertionError:
raised from C:\Users\HP\Anaconda3\lib\site-packages\numba\parfor.py:4138
In definition 1:
AssertionError:
raised from C:\Users\HP\Anaconda3\lib\site-packages\numba\parfor.py:4138
This error is usually caused by passing an argument of a type that is unsupported by the named function.
[1] During: resolving callee type: Function(<built-in function reduce>)
[2] During: typing of call at <ipython-input-503-cd6ef880fd4a> (10)


File "<ipython-input-503-cd6ef880fd4a>", line 10:
def mtp(gen):
<source elided>
for i in prange(gen.shape[0]):
results[i] = reduce(mul, gen[i], initializer=None)
^

我不确定我哪里出错了。任何人都可以指出我正确的方向吗?非常感谢。

最佳答案

您可以在 numba jitted 函数中使用 np.prod :

n = 3
lst = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
arr = np.array(lst)
flat = np.ravel(arr).tolist()
gen = [list(a) for a in product(flat, repeat=n)]

@jit(nopython=True, parallel=True)
def mtp(gen):
results = np.empty(len(gen))
for i in prange(len(gen)):
results[i] = np.prod(gen[i])
return results

或者,您可以使用 reduce 如下(感谢@stuartarchibald 指出这一点),尽管并行化在下面不起作用(至少从 numba 0.48 开始):
import numpy as np
from itertools import product
from functools import reduce
from operator import mul
from numba import njit, prange

lst = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
arr = np.array(lst)
n = 3
flat = np.ravel(arr).tolist()
gen = np.array([list(a) for a in product(flat, repeat=n)])

@njit
def mul_wrapper(x, y):
return mul(x, y)

@njit
def mtp(gen):
results = np.empty(gen.shape[0])
for i in prange(gen.shape[0]):
results[i] = reduce(mul_wrapper, gen[i], None)
return results

print(mtp(gen))

或者,因为 Numba 内部有一些魔法可以发现将转义函数并编译它们的闭包。 (再次感谢@stuartarchibald),您可以在下面这样做:
@njit
def mtp(gen):
results = np.empty(gen.shape[0])
def op(x, y):
return mul(x, y)
for i in prange(gen.shape[0]):
results[i] = reduce(op, gen[i], None)
return results

但同样,从 numba 0.48 开始,并行在这里不起作用。

备注 ,核心开发团队成员推荐的方法是采用第一个使用 np.prod 的解决方案。 .它可以与并行标志一起使用,并且具有更直接的实现。

关于python - 如何将 numba 与 functools.reduce() 一起使用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60628467/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com