- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试创建一个简单的神经网络来看看它是如何工作的。
二次方程的形式为 (x-x1)*(x-x2)=0,如果重新排列,它将变成 ax^2+bx+c=0,其中 a=1, b=-2* x1*x2,c=x1*x2。我想创建一个神经网络,其中输入是 (a,b),输出是 (x1,x2)。
为了做到这一点,我创建了 2 个创建数据的函数,并将它们存储在名为输入和输出的矩阵中。
我创建了一个具有 2x2x2 层(包括输入和输出)的神经网络,并对其进行了测试,结果很糟糕,即使在对其进行了调整之后也是如此。
我想我遇到的问题与数据有关,因为神经网络可以工作并输出结果,但效果不佳。
我不知道问题出在哪里,但我的猜测是它与数据缩放有关。我试图在不缩放的情况下引入数据,但得到了同样糟糕的结果。
这个想法是我提供了足够的训练,所以权重和偏差是这样的,提供任何输入数据,结果将非常接近所需的输出。
这是整个程序的代码
import keras
from keras import backend as K
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense, Activation
from keras.layers.core import Dense
from keras.optimizers import SGD
from keras.metrics import categorical_crossentropy
from sklearn.metrics import confusion_matrix
import itertools
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from random import randint
from sklearn.preprocessing import MinMaxScaler
import numpy as np
def abc(x1, x2):
b=-2*x1*x2
c=x1*x2
sol=[b,c]
return sol
a=10
b=10
c=a*b
def Nx2(N, M):
matrix=[]
n = N+ 1
m= M + 1
for i in range(1,n):
for j in range(1,m):
temp=[i,j]
matrix.append(temp)
final_matrix = np.array(matrix)
return final_matrix
output=Nx2(a, b)
# print(output)
input=[]
for i in range(0,c):
temp2=abc(output[i,0],output[i,1])
input.append(temp2)
input=np.array(input)
print(input)
train_labels = output
train_samples = input
scaler = MinMaxScaler(feature_range=(0,1))
scaled_train_samples = scaler.fit_transform((train_samples).reshape(-1,1))
scaled_train_samples=scaled_train_samples.reshape(-1,2)
scaler = MinMaxScaler(feature_range=(0,1))
scaled_train_labels = scaler.fit_transform((train_labels).reshape(-1,1))
scaled_train_labels=scaled_train_labels.reshape(-1,2)
print(scaled_train_samples)
print(scaled_train_labels)
model = Sequential([
Dense(2, input_shape=(2,), activation='sigmoid'),
Dense(2, activation='sigmoid'),
])
print(model.weights)
model.compile(SGD(lr=0.01), loss='mean_squared_error', metrics=['accuracy'])
model.fit(scaled_train_labels, scaled_train_labels, validation_split=0.2, batch_size=10, epochs=20, shuffle=True, verbose=2)
print(model.summary())
print(model.weights)
Epoch 1/20
- 0s - loss: 0.1456 - accuracy: 0.5500 - val_loss: 0.3715 - val_accuracy: 0.0500 Epoch 2/20
- 0s - loss: 0.1449 - accuracy: 0.5500 - val_loss: 0.3704 - val_accuracy: 0.0500 Epoch 3/20
- 0s - loss: 0.1443 - accuracy: 0.5500 - val_loss: 0.3692 - val_accuracy: 0.0500 Epoch 4/20
- 0s - loss: 0.1437 - accuracy: 0.5500 - val_loss: 0.3681 - val_accuracy: 0.0500 Epoch 5/20
- 0s - loss: 0.1431 - accuracy: 0.5500 - val_loss: 0.3670 - val_accuracy: 0.0500 Epoch 6/20
- 0s - loss: 0.1425 - accuracy: 0.5500 - val_loss: 0.3658 - val_accuracy: 0.0500 Epoch 7/20
- 0s - loss: 0.1419 - accuracy: 0.5500 - val_loss: 0.3647 - val_accuracy: 0.0500 Epoch 8/20
- 0s - loss: 0.1413 - accuracy: 0.5500 - val_loss: 0.3636 - val_accuracy: 0.0500 Epoch 9/20
- 0s - loss: 0.1407 - accuracy: 0.5500 - val_loss: 0.3625 - val_accuracy: 0.0500 Epoch 10/20
- 0s - loss: 0.1401 - accuracy: 0.5500 - val_loss: 0.3613 - val_accuracy: 0.0500 Epoch 11/20
- 0s - loss: 0.1395 - accuracy: 0.5500 - val_loss: 0.3602 - val_accuracy: 0.0500 Epoch 12/20
- 0s - loss: 0.1389 - accuracy: 0.5500 - val_loss: 0.3591 - val_accuracy: 0.0500 Epoch 13/20
- 0s - loss: 0.1383 - accuracy: 0.5500 - val_loss: 0.3580 - val_accuracy: 0.0500 Epoch 14/20
- 0s - loss: 0.1377 - accuracy: 0.5500 - val_loss: 0.3568 - val_accuracy: 0.0500 Epoch 15/20
- 0s - loss: 0.1372 - accuracy: 0.5500 - val_loss: 0.3557 - val_accuracy: 0.0500 Epoch 16/20
- 0s - loss: 0.1366 - accuracy: 0.5500 - val_loss: 0.3546 - val_accuracy: 0.0500 Epoch 17/20
- 0s - loss: 0.1360 - accuracy: 0.5500 - val_loss: 0.3535 - val_accuracy: 0.0500 Epoch 18/20
- 0s - loss: 0.1354 - accuracy: 0.5500 - val_loss: 0.3524 - val_accuracy: 0.0500 Epoch 19/20
- 0s - loss: 0.1348 - accuracy: 0.5500 - val_loss: 0.3513 - val_accuracy: 0.0500 Epoch 20/20
- 0s - loss: 0.1342 - accuracy: 0.5500 - val_loss: 0.3502 - val_accuracy: 0.0500
最佳答案
您的代码有几个问题:
confusion_matrix
或 categorical_crossentropy
)。 sigmoid
激活最后一层;在回归问题中,这应该是 linear
(或留空,因为 linear
是默认的 Keras 激活)。 relu
激活中间层,而不是 sigmoid
. model = Sequential([
Dense(30, input_shape=(2,), activation='relu'),
# Dense(10, activation='relu'), # uncomment for experimentation
Dense(2, activation='linear'),
])
model.compile(SGD(lr=0.01), loss='mean_squared_error')
model.fit()
中似乎有一个错字。 (你传递了两次标签,而不是样本) - 也一定要解决这个问题。
关于python - 神经网络模型没有提高准确性。缩放问题还是模型问题?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60831731/
这与 Payubiz payment gateway sdk 关系不大一体化。但是,主要问题与构建项目有关。 每当我们尝试在模拟器上运行应用程序时。我们得到以下失败: What went wrong:
我有一个现有的应用程序,其中包含在同一主机上运行的 4 个 docker 容器。它们已使用 link 命令链接在一起。 然而,在 docker 升级后,link 行为已被弃用,并且似乎有所改变。我们现
在 Internet 模型中有四层:链路 -> 网络 -> 传输 -> 应用程序。 我真的不知道网络层和传输层之间的区别。当我读到: Transport layer: include congesti
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
前言: 生活中,我们在上网时,打开一个网页,就可以看到网址,如下: https😕/xhuahua.blog.csdn.net/ 访问网站使用的协议类型:https(基于 http 实现的,只不过在
网络 避免网络问题降低Hadoop和HBase性能的最重要因素可能是所使用的交换硬件,在项目范围的早期做出的决策可能会导致群集大小增加一倍或三倍(或更多)时出现重大问题。 需要考虑的重要事项:
网络 网络峰值 如果您看到定期的网络峰值,您可能需要检查compactionQueues以查看主要压缩是否正在发生。 有关管理压缩的更多信息,请参阅管理压缩部分的内容。 Loopback IP
Pure Data 有一个 loadbang 组件,它按照它说的做:当图形开始运行时发送一个 bang。 NoFlo 的 core/Kick 在其 IN 输入被击中之前不会发送其数据,并且您无法在 n
我有一台 Linux 构建机器,我也安装了 minikube。在 minikube 实例中,我安装了 artifactory,我将使用它来存储各种构建工件 我现在希望能够在我的开发机器上做一些工作(这
我想知道每个视频需要多少种不同的格式才能支持所有主要设备? 在我考虑的主要设备中:安卓手机 + iPhone + iPad . 对具有不同比特率的视频进行编码也是一种好习惯吗? 那里有太多相互矛盾的信
我有一个使用 firebase 的 Flutter Web 应用程序,我有两个 firebase 项目(dev 和 prod)。 我想为这个项目设置 Flavors(只是网络没有移动)。 在移动端,我
我正在读这篇文章Ars article关于密码安全,它提到有一些网站“在传输之前对密码进行哈希处理”? 现在,假设这不使用 SSL 连接 (HTTPS),a.这真的安全吗? b.如果是的话,你会如何在
我试图了解以下之间的关系: eth0在主机上;和 docker0桥;和 eth0每个容器上的接口(interface) 据我了解,Docker: 创建一个 docker0桥接,然后为其分配一个与主机上
我需要编写一个java程序,通过网络将对象发送到客户端程序。问题是一些需要发送的对象是不可序列化的。如何最好地解决这个问题? 最佳答案 发送在客户端重建对象所需的数据。 关于java - 不可序列化对
所以我最近关注了this有关用 Java 制作基本聊天室的教程。它使用多线程,是一个“面向连接”的服务器。我想知道如何使用相同的 Sockets 和 ServerSockets 来发送对象的 3d 位
我想制作一个系统,其中java客户端程序将图像发送到中央服务器。中央服务器保存它们并运行使用这些图像的网站。 我应该如何发送图像以及如何接收它们?我可以使用同一个网络服务器来接收和显示网站吗? 最佳答
我正在尝试设置我的 rails 4 应用程序,以便它发送电子邮件。有谁知道我为什么会得到: Net::SMTPAuthenticationError 534-5.7.9 Application-spe
我正在尝试编写一个简单的客户端-服务器程序,它将客户端计算机连接到服务器计算机。 到目前为止,我的代码在本地主机上运行良好,但是当我将客户端代码中的 IP 地址替换为服务器计算机的本地 IP 地址时,
我需要在服务器上并行启动多个端口,并且所有服务器套接字都应在 socket.accept() 上阻塞。 同一个线程需要启动客户端套接字(许多)来连接到特定的 ServerSocket。 这能实现吗?
我的工作执行了大约 10000 次以下任务: 1) HTTP 请求(1 秒) 2)数据转换(0.3秒) 3)数据库插入(0.7秒) 每次迭代的总时间约为 2 秒,分布如上所述。 我想做多任务处理,但我
我是一名优秀的程序员,十分优秀!