gpt4 book ai didi

python - 神经网络模型没有提高准确性。缩放问题还是模型问题?

转载 作者:行者123 更新时间:2023-12-04 10:21:20 25 4
gpt4 key购买 nike

我正在尝试创建一个简单的神经网络来看看它是如何工作的。

二次方程的形式为 (x-x1)*(x-x2)=0,如果重新排列,它将变成 ax^2+bx+c=0,其中 a=1, b=-2* x1*x2,c=x1*x2。我想创建一个神经网络,其中输入是 (a,b),输出是 (x1,x2)。

为了做到这一点,我创建了 2 个创建数据的函数,并将它们存储在名为输入和输出的矩阵中。

我创建了一个具有 2x2x2 层(包括输入和输出)的神经网络,并对其进行了测试,结果很糟糕,即使在对其进行了调整之后也是如此。

我想我遇到的问题与数据有关,因为神经网络可以工作并输出结果,但效果不佳。

我不知道问题出在哪里,但我的猜测是它与数据缩放有关。我试图在不缩放的情况下引入数据,但得到了同样糟糕的结果。

这个想法是我提供了足够的训练,所以权重和偏差是这样的,提供任何输入数据,结果将非常接近所需的输出。

这是整个程序的代码

import keras
from keras import backend as K
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense, Activation
from keras.layers.core import Dense
from keras.optimizers import SGD
from keras.metrics import categorical_crossentropy
from sklearn.metrics import confusion_matrix
import itertools

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

from random import randint
from sklearn.preprocessing import MinMaxScaler


import numpy as np

def abc(x1, x2):
b=-2*x1*x2
c=x1*x2
sol=[b,c]
return sol

a=10
b=10
c=a*b


def Nx2(N, M):
matrix=[]
n = N+ 1
m= M + 1
for i in range(1,n):
for j in range(1,m):
temp=[i,j]
matrix.append(temp)
final_matrix = np.array(matrix)
return final_matrix

output=Nx2(a, b)

# print(output)

input=[]
for i in range(0,c):
temp2=abc(output[i,0],output[i,1])
input.append(temp2)
input=np.array(input)

print(input)

train_labels = output
train_samples = input

scaler = MinMaxScaler(feature_range=(0,1))
scaled_train_samples = scaler.fit_transform((train_samples).reshape(-1,1))
scaled_train_samples=scaled_train_samples.reshape(-1,2)

scaler = MinMaxScaler(feature_range=(0,1))
scaled_train_labels = scaler.fit_transform((train_labels).reshape(-1,1))
scaled_train_labels=scaled_train_labels.reshape(-1,2)

print(scaled_train_samples)
print(scaled_train_labels)

model = Sequential([
Dense(2, input_shape=(2,), activation='sigmoid'),
Dense(2, activation='sigmoid'),
])

print(model.weights)

model.compile(SGD(lr=0.01), loss='mean_squared_error', metrics=['accuracy'])
model.fit(scaled_train_labels, scaled_train_labels, validation_split=0.2, batch_size=10, epochs=20, shuffle=True, verbose=2)

print(model.summary())
print(model.weights)

这些是我得到的结果。
 Epoch 1/20 
- 0s - loss: 0.1456 - accuracy: 0.5500 - val_loss: 0.3715 - val_accuracy: 0.0500 Epoch 2/20
- 0s - loss: 0.1449 - accuracy: 0.5500 - val_loss: 0.3704 - val_accuracy: 0.0500 Epoch 3/20
- 0s - loss: 0.1443 - accuracy: 0.5500 - val_loss: 0.3692 - val_accuracy: 0.0500 Epoch 4/20
- 0s - loss: 0.1437 - accuracy: 0.5500 - val_loss: 0.3681 - val_accuracy: 0.0500 Epoch 5/20
- 0s - loss: 0.1431 - accuracy: 0.5500 - val_loss: 0.3670 - val_accuracy: 0.0500 Epoch 6/20
- 0s - loss: 0.1425 - accuracy: 0.5500 - val_loss: 0.3658 - val_accuracy: 0.0500 Epoch 7/20
- 0s - loss: 0.1419 - accuracy: 0.5500 - val_loss: 0.3647 - val_accuracy: 0.0500 Epoch 8/20
- 0s - loss: 0.1413 - accuracy: 0.5500 - val_loss: 0.3636 - val_accuracy: 0.0500 Epoch 9/20
- 0s - loss: 0.1407 - accuracy: 0.5500 - val_loss: 0.3625 - val_accuracy: 0.0500 Epoch 10/20
- 0s - loss: 0.1401 - accuracy: 0.5500 - val_loss: 0.3613 - val_accuracy: 0.0500 Epoch 11/20
- 0s - loss: 0.1395 - accuracy: 0.5500 - val_loss: 0.3602 - val_accuracy: 0.0500 Epoch 12/20
- 0s - loss: 0.1389 - accuracy: 0.5500 - val_loss: 0.3591 - val_accuracy: 0.0500 Epoch 13/20
- 0s - loss: 0.1383 - accuracy: 0.5500 - val_loss: 0.3580 - val_accuracy: 0.0500 Epoch 14/20
- 0s - loss: 0.1377 - accuracy: 0.5500 - val_loss: 0.3568 - val_accuracy: 0.0500 Epoch 15/20
- 0s - loss: 0.1372 - accuracy: 0.5500 - val_loss: 0.3557 - val_accuracy: 0.0500 Epoch 16/20
- 0s - loss: 0.1366 - accuracy: 0.5500 - val_loss: 0.3546 - val_accuracy: 0.0500 Epoch 17/20
- 0s - loss: 0.1360 - accuracy: 0.5500 - val_loss: 0.3535 - val_accuracy: 0.0500 Epoch 18/20
- 0s - loss: 0.1354 - accuracy: 0.5500 - val_loss: 0.3524 - val_accuracy: 0.0500 Epoch 19/20
- 0s - loss: 0.1348 - accuracy: 0.5500 - val_loss: 0.3513 - val_accuracy: 0.0500 Epoch 20/20
- 0s - loss: 0.1342 - accuracy: 0.5500 - val_loss: 0.3502 - val_accuracy: 0.0500

有人可以指出我正确的方向吗?

谢谢

最佳答案

您的代码有几个问题:

  • 您正在将准确度用于回归问题,这是毫无意义的(准确度仅适用于分类问题)。您应该仅使用损失来监控模型的性能,这里是 MSE(出于同样的原因,您不需要导入 confusion_matrixcategorical_crossentropy )。
  • 您错误地使用了 sigmoid激活最后一层;在回归问题中,这应该是 linear (或留空,因为 linear 是默认的 Keras 激活)。
  • 您应该使用 relu激活中间层,而不是 sigmoid .
  • 你的模型看起来太简单了,不清楚为什么你觉得只能使用 2 节点层(你不应该,当然除了输出层)。

  • 总而言之,这是一个起点:
    model = Sequential([
    Dense(30, input_shape=(2,), activation='relu'),
    # Dense(10, activation='relu'), # uncomment for experimentation
    Dense(2, activation='linear'),
    ])

    model.compile(SGD(lr=0.01), loss='mean_squared_error')

    但这里的代码词是实验......

    最后但并非最不重要的一点是,您的 model.fit() 中似乎有一个错字。 (你传递了两次标签,而不是样本) - 也一定要解决这个问题。

    关于python - 神经网络模型没有提高准确性。缩放问题还是模型问题?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60831731/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com