- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试创建一个简单的神经网络来看看它是如何工作的。
二次方程的形式为 (x-x1)*(x-x2)=0,如果重新排列,它将变成 ax^2+bx+c=0,其中 a=1, b=-2* x1*x2,c=x1*x2。我想创建一个神经网络,其中输入是 (a,b),输出是 (x1,x2)。
为了做到这一点,我创建了 2 个创建数据的函数,并将它们存储在名为输入和输出的矩阵中。
我创建了一个具有 2x2x2 层(包括输入和输出)的神经网络,并对其进行了测试,结果很糟糕,即使在对其进行了调整之后也是如此。
我想我遇到的问题与数据有关,因为神经网络可以工作并输出结果,但效果不佳。
我不知道问题出在哪里,但我的猜测是它与数据缩放有关。我试图在不缩放的情况下引入数据,但得到了同样糟糕的结果。
这个想法是我提供了足够的训练,所以权重和偏差是这样的,提供任何输入数据,结果将非常接近所需的输出。
这是整个程序的代码
import keras
from keras import backend as K
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense, Activation
from keras.layers.core import Dense
from keras.optimizers import SGD
from keras.metrics import categorical_crossentropy
from sklearn.metrics import confusion_matrix
import itertools
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from random import randint
from sklearn.preprocessing import MinMaxScaler
import numpy as np
def abc(x1, x2):
b=-2*x1*x2
c=x1*x2
sol=[b,c]
return sol
a=10
b=10
c=a*b
def Nx2(N, M):
matrix=[]
n = N+ 1
m= M + 1
for i in range(1,n):
for j in range(1,m):
temp=[i,j]
matrix.append(temp)
final_matrix = np.array(matrix)
return final_matrix
output=Nx2(a, b)
# print(output)
input=[]
for i in range(0,c):
temp2=abc(output[i,0],output[i,1])
input.append(temp2)
input=np.array(input)
print(input)
train_labels = output
train_samples = input
scaler = MinMaxScaler(feature_range=(0,1))
scaled_train_samples = scaler.fit_transform((train_samples).reshape(-1,1))
scaled_train_samples=scaled_train_samples.reshape(-1,2)
scaler = MinMaxScaler(feature_range=(0,1))
scaled_train_labels = scaler.fit_transform((train_labels).reshape(-1,1))
scaled_train_labels=scaled_train_labels.reshape(-1,2)
print(scaled_train_samples)
print(scaled_train_labels)
model = Sequential([
Dense(2, input_shape=(2,), activation='sigmoid'),
Dense(2, activation='sigmoid'),
])
print(model.weights)
model.compile(SGD(lr=0.01), loss='mean_squared_error', metrics=['accuracy'])
model.fit(scaled_train_labels, scaled_train_labels, validation_split=0.2, batch_size=10, epochs=20, shuffle=True, verbose=2)
print(model.summary())
print(model.weights)
Epoch 1/20
- 0s - loss: 0.1456 - accuracy: 0.5500 - val_loss: 0.3715 - val_accuracy: 0.0500 Epoch 2/20
- 0s - loss: 0.1449 - accuracy: 0.5500 - val_loss: 0.3704 - val_accuracy: 0.0500 Epoch 3/20
- 0s - loss: 0.1443 - accuracy: 0.5500 - val_loss: 0.3692 - val_accuracy: 0.0500 Epoch 4/20
- 0s - loss: 0.1437 - accuracy: 0.5500 - val_loss: 0.3681 - val_accuracy: 0.0500 Epoch 5/20
- 0s - loss: 0.1431 - accuracy: 0.5500 - val_loss: 0.3670 - val_accuracy: 0.0500 Epoch 6/20
- 0s - loss: 0.1425 - accuracy: 0.5500 - val_loss: 0.3658 - val_accuracy: 0.0500 Epoch 7/20
- 0s - loss: 0.1419 - accuracy: 0.5500 - val_loss: 0.3647 - val_accuracy: 0.0500 Epoch 8/20
- 0s - loss: 0.1413 - accuracy: 0.5500 - val_loss: 0.3636 - val_accuracy: 0.0500 Epoch 9/20
- 0s - loss: 0.1407 - accuracy: 0.5500 - val_loss: 0.3625 - val_accuracy: 0.0500 Epoch 10/20
- 0s - loss: 0.1401 - accuracy: 0.5500 - val_loss: 0.3613 - val_accuracy: 0.0500 Epoch 11/20
- 0s - loss: 0.1395 - accuracy: 0.5500 - val_loss: 0.3602 - val_accuracy: 0.0500 Epoch 12/20
- 0s - loss: 0.1389 - accuracy: 0.5500 - val_loss: 0.3591 - val_accuracy: 0.0500 Epoch 13/20
- 0s - loss: 0.1383 - accuracy: 0.5500 - val_loss: 0.3580 - val_accuracy: 0.0500 Epoch 14/20
- 0s - loss: 0.1377 - accuracy: 0.5500 - val_loss: 0.3568 - val_accuracy: 0.0500 Epoch 15/20
- 0s - loss: 0.1372 - accuracy: 0.5500 - val_loss: 0.3557 - val_accuracy: 0.0500 Epoch 16/20
- 0s - loss: 0.1366 - accuracy: 0.5500 - val_loss: 0.3546 - val_accuracy: 0.0500 Epoch 17/20
- 0s - loss: 0.1360 - accuracy: 0.5500 - val_loss: 0.3535 - val_accuracy: 0.0500 Epoch 18/20
- 0s - loss: 0.1354 - accuracy: 0.5500 - val_loss: 0.3524 - val_accuracy: 0.0500 Epoch 19/20
- 0s - loss: 0.1348 - accuracy: 0.5500 - val_loss: 0.3513 - val_accuracy: 0.0500 Epoch 20/20
- 0s - loss: 0.1342 - accuracy: 0.5500 - val_loss: 0.3502 - val_accuracy: 0.0500
最佳答案
您的代码有几个问题:
confusion_matrix
或 categorical_crossentropy
)。 sigmoid
激活最后一层;在回归问题中,这应该是 linear
(或留空,因为 linear
是默认的 Keras 激活)。 relu
激活中间层,而不是 sigmoid
. model = Sequential([
Dense(30, input_shape=(2,), activation='relu'),
# Dense(10, activation='relu'), # uncomment for experimentation
Dense(2, activation='linear'),
])
model.compile(SGD(lr=0.01), loss='mean_squared_error')
model.fit()
中似乎有一个错字。 (你传递了两次标签,而不是样本) - 也一定要解决这个问题。
关于python - 神经网络模型没有提高准确性。缩放问题还是模型问题?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60831731/
我使用以下代码来查看用户在特定页面上的停留时间。我为此脚本使用了带有 src 属性的隐藏图像: $timer_seconds = 1; while(!connection_aborted()) {
我在 Keras 中使用自定义损失函数: def get_top_one_probability(vector): return (K.exp(vector) / K.sum(K.exp(vect
当我使用 long 来节省一个月毫秒时,我发现一个问题。但我打印负数。所以我做了一个测试 代码如下: LogUtils.d(TAG, "long max time:"+Long.MAX_VALUE);
关于使用 Lenet5 网络解释某些优化器在 MNIST 上的性能,我有几个问题,以及验证损失/准确性与训练损失/准确性图表究竟告诉我们什么。所以一切都是在 Keras 中使用标准的 LeNet5 网
我有 1000 个 pdf(每个 200 页)。 我需要将每个 pdf 添加到 Azure 搜索索引中的索引(作为小文本 block 和相关元数据,例如每个 pdf 200 个 block ) 已达到
我必须在 mssql 数据库中存储一些间隔。我知道日期时间的准确性约为。 3.3ms(只能结束0、3、7)。但是当我计算日期时间之间的间隔时,我发现结果只能以 0、3 和 6 结尾。所以我总结的间隔越
我想制作一个需要将位置精确到大约 1m 或更小的 Android 应用程序。“Fused Location Manager API”是否足够好,或者 GPS 永远不会如此准确,无论是否与其他传感器融合
我想使用 pySerial 的 serial.tools.list_ports.comports() 列出可用的 COM 端口。 阅读documentation : The function retu
使用 pyomo 和 glpk 求解器,我定义了以下目标规则: def cost_rule(m): return (sum(m.rd[i]*m.pRdImp*m.dt - m.vr[i]*m.
我正在遵循“Lucene in Action”中的示例,第 308-315 页,它描述了 Lucene Spatial。我正在使用 lucene 2.9.4。我用过 http://geocoder.u
我一直在试验各种计时方法的代码。创建延迟的一种方法是使用thread.sleep(millis)运行线程,但可以很好地说明,线程“唤醒”的时间并不完全准确,可能在这个时间之前或之后。然后我遇到一个定义
我在使用 boost::sleep() 函数时遇到奇怪的问题。我有这个基本代码: #include #include #include void thread_func() { time
数字示例 我正在使用标准的 pytesseract img 来发送文本。我尝试过仅使用数字选项,90% 的情况下它是完美的,但上面是一个非常错误的例子!这个例子根本没有产生任何字符 如您所见,现在有字
我想从 python 中的图像中提取文本.为了做到这一点,我选择了 pytesseract .当我尝试从图像中提取文本时,结果并不令人满意。我也经历过this并实现了列出的所有技术。然而,它的表现似乎
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我想为我的移动项目需求之一实现条形码。要存储的数据量非常少(<25 个字母数字)。我想知道对于这个项目实现一维条形码或二维条形码(特别是二维码)是否更明智。如果有人能从 1d 与 2d 的角度对我进行
想象一个二元分类问题。假设我在 pred_test 中存储了 800,000 个预测概率。我将 cutoff 定义为 pred_test 中的任何值,以便大于或等于 cutoff 的值被分配值 1 和
已关闭。此问题需要 debugging details 。目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and the
我正在使用 iBeacon 和 Altbeacon 测试定位系统。我发现我的三角测量结果实际上非常准确,但有时需要 5 秒以上才能看到正确的结果。 例如,假设我目前正站在A点。 Altbeacon +
因此,我有 2 个独立的数据表,它们看起来非常相同,但它们行中的值可能不同。 编辑: 我可以通过创建一个可以用作主键的临时标识列来获得唯一 ID,如果这样做更容易的话。所以将 ID 列视为主键。 表A
我是一名优秀的程序员,十分优秀!