- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
从下面的代码中,看起来使用 keras 和 scikit 评估 roc 实际上有所不同。有人知道解释吗?
import tensorflow as tf
from keras.layers import Dense, Input, Dropout
from keras import Sequential
import keras
from keras.constraints import maxnorm
from sklearn.metrics import roc_auc_score
# training data: X_train, y_train
# validation data: X_valid, y_valid
# Define the custom callback we will be using to evaluate roc with scikit
class MyCustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self,epoch, logs=None):
y_pred = model.predict(X_valid)
print("roc evaluated with scikit = ",roc_auc_score(y_valid, y_pred))
return
# Define the model.
def model():
METRICS = [
tf.keras.metrics.BinaryAccuracy(name='accuracy'),
tf.keras.metrics.AUC(name='auc'),
]
optimizer="adam"
dropout=0.1
init='uniform'
nbr_features= vocab_size-1 #2500
dense_nparams=256
model = Sequential()
model.add(Dense(dense_nparams, activation='relu', input_shape=(nbr_features,), kernel_initializer=init, kernel_constraint=maxnorm(3)))
model.add(Dropout(dropout))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer=optimizer,metrics = METRICS)
return model
# instantiate the model
model = model()
# fit the model
history = model.fit(x=X_train, y=y_train, batch_size = 8, epochs = 8, verbose=1,validation_data = (X_valid,y_valid), callbacks=[MyCustomCallback()], shuffle=True, validation_freq=1, max_queue_size=10, workers=4, use_multiprocessing=True)
Train on 4000 samples, validate on 1000 samples
Epoch 1/8
4000/4000 [==============================] - 15s 4ms/step - loss: 0.7950 - accuracy: 0.7149 - auc: 0.7213 - val_loss: 0.7551 - val_accuracy: 0.7608 - val_auc: 0.7770
roc evaluated with scikit = 0.78766515781747
Epoch 2/8
4000/4000 [==============================] - 15s 4ms/step - loss: 0.0771 - accuracy: 0.8235 - auc: 0.8571 - val_loss: 1.0803 - val_accuracy: 0.8574 - val_auc: 0.8954
roc evaluated with scikit = 0.7795984218252997
Epoch 3/8
4000/4000 [==============================] - 14s 4ms/step - loss: 0.0085 - accuracy: 0.8762 - auc: 0.9162 - val_loss: 1.2084 - val_accuracy: 0.8894 - val_auc: 0.9284
roc evaluated with scikit = 0.7705172905961992
Epoch 4/8
4000/4000 [==============================] - 14s 4ms/step - loss: 0.0025 - accuracy: 0.8982 - auc: 0.9361 - val_loss: 1.1700 - val_accuracy: 0.9054 - val_auc: 0.9424
roc evaluated with scikit = 0.7808804338960933
Epoch 5/8
4000/4000 [==============================] - 14s 4ms/step - loss: 0.0020 - accuracy: 0.9107 - auc: 0.9469 - val_loss: 1.1887 - val_accuracy: 0.9150 - val_auc: 0.9501
roc evaluated with scikit = 0.7811174659489438
Epoch 6/8
4000/4000 [==============================] - 14s 4ms/step - loss: 0.0018 - accuracy: 0.9184 - auc: 0.9529 - val_loss: 1.2036 - val_accuracy: 0.9213 - val_auc: 0.9548
roc evaluated with scikit = 0.7822898825544409
Epoch 7/8
4000/4000 [==============================] - 14s 4ms/step - loss: 0.0017 - accuracy: 0.9238 - auc: 0.9566 - val_loss: 1.2231 - val_accuracy: 0.9258 - val_auc: 0.9579
roc evaluated with scikit = 0.7817036742516923
Epoch 8/8
4000/4000 [==============================] - 14s 4ms/step - loss: 0.0016 - accuracy: 0.9278 - auc: 0.9592 - val_loss: 1.2426 - val_accuracy: 0.9293 - val_auc: 0.9600
roc evaluated with scikit = 0.7817419052279585
model.evaluate(X_valid, y_valid)
,也会发生同样的情况.任何帮助是极大的赞赏。
class MyCustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self,epoch, logs=None):
y_pred = model.predict_proba(X_valid)
print("roc evaluated with scikit = ",roc_auc_score(y_valid, y_pred))
return
model = model()
history = model.fit(x=X_trainl, y=y_train, batch_size = 8, epochs = 3, verbose=1,validation_data = (X_valid,y_valid), callbacks=[MyCustomCallback()], shuffle=True, validation_freq=1, max_queue_size=10, workers=4, use_multiprocessing=True)
Train on 4000 samples, validate on 1000 samples
Epoch 1/3
4000/4000 [==============================] - 20s 5ms/step - loss: 0.8266 - accuracy: 0.7261 - auc: 0.7409 - val_loss: 0.7547 - val_accuracy: 0.7627 - val_auc: 0.7881
roc evaluated with scikit = 0.7921764130168828
Epoch 2/3
4000/4000 [==============================] - 15s 4ms/step - loss: 0.0482 - accuracy: 0.8270 - auc: 0.8657 - val_loss: 1.0831 - val_accuracy: 0.8620 - val_auc: 0.9054
roc evaluated with scikit = 0.78525915504445
Epoch 3/3
4000/4000 [==============================] - 15s 4ms/step - loss: 0.0092 - accuracy: 0.8794 - auc: 0.9224 - val_loss: 1.2226 - val_accuracy: 0.8928 - val_auc: 0.9340
roc evaluated with scikit = 0.7705555215724655
最佳答案
问题在于您传递给 sklearn
的参数。 roc_auc_score()
的函数计算。您应该使用 model.predict_proba()
而不是 model.predict()
.
def on_epoch_end(self,epoch, logs=None):
y_pred = model.predict_proba(X_valid)
print("roc evaluated with scikit = ",roc_auc_score(y_valid, y_pred))
return
关于machine-learning - Keras ROC 与 Scikit ROC 不同?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61233047/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!