gpt4 book ai didi

tensorflow - TF2 : Compute gradients in keras callback in non-eager mode

转载 作者:行者123 更新时间:2023-12-04 10:06:24 26 4
gpt4 key购买 nike

TF 版本:2.2.0-rc3(在 Colab 中)

我在回调中使用以下代码(来自 tf.keras get computed gradient during training )来计算模型中所有参数的梯度。

def on_train_begin(self, logs=None):
# Functions return weights of each layer
self.layerweights = []
for lndx, l in enumerate(self.model.layers):
if hasattr(l, 'kernel'):
self.layerweights.append(l.kernel)

input_tensors = [self.model.inputs[0],
self.model.sample_weights[0],
self.model.targets[0],
K.learning_phase()]

# Get gradients of all the relevant layers at once
grads = self.model.optimizer.get_gradients(self.model.total_loss, self.layerweights)
self.get_gradients = K.function(inputs=input_tensors,outputs=grads)

但是,当我运行它时,出现以下错误。
AttributeError: 'Model' object has no attribute 'sample_weights'

对于 model.targets也发生同样的错误。

如何在回调中获取渐变?

在eager模式下,解决方案 Get Gradients with Keras Tensorflow 2.0作品。但是,我想在非急切模式下使用它。

最佳答案

这是使用 keras 后端捕获梯度的端到端代码。我已经从 model.fit 的回调中调用梯度捕获函数来捕获每个 epoch 结束后的梯度。 这段代码在 tensorflow 1.x 和 tensorflow 2.x 版本中都是兼容的,而且我已经在 colab 中运行了它。 如果你想在 tensorflow 1.x 中运行,那么将程序中的第一条语句替换为 %tensorflow_version 1.x并重新启动运行时。

捕获模型的梯度 -

# Importing dependency
%tensorflow_version 2.x
from tensorflow import keras
from tensorflow.keras import backend as K
from tensorflow.keras import datasets
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.layers import BatchNormalization
import numpy as np
import tensorflow as tf

tf.keras.backend.clear_session() # For easy reset of notebook state.
tf.compat.v1.disable_eager_execution()

# Import Data
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Build Model
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10))

# Model Summary
model.summary()

# Model Compile
model.compile(optimizer='adam',
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

# Define the Gradient Fucntion
epoch_gradient = []

# Define the Gradient Function
def get_gradient_func(model):
grads = K.gradients(model.total_loss, model.trainable_weights)
inputs = model._feed_inputs + model._feed_targets + model._feed_sample_weights
func = K.function(inputs, grads)
return func

# Define the Required Callback Function
class GradientCalcCallback(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
get_gradient = get_gradient_func(model)
grads = get_gradient([train_images, train_labels, np.ones(len(train_labels))])
epoch_gradient.append(grads)

epoch = 4

model.fit(train_images, train_labels, epochs=epoch, validation_data=(test_images, test_labels), callbacks=[GradientCalcCallback()])


# (7) Convert to a 2 dimensiaonal array of (epoch, gradients) type
gradient = np.asarray(epoch_gradient)
print("Total number of epochs run:", epoch)
print("Gradient Array has the shape:",gradient.shape)

输出 -
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 30, 30, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 13, 13, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 4, 4, 64) 36928
_________________________________________________________________
flatten (Flatten) (None, 1024) 0
_________________________________________________________________
dense (Dense) (None, 64) 65600
_________________________________________________________________
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________
Train on 50000 samples, validate on 10000 samples
Epoch 1/4
50000/50000 [==============================] - 73s 1ms/sample - loss: 1.8199 - accuracy: 0.3834 - val_loss: 1.4791 - val_accuracy: 0.4548
Epoch 2/4
50000/50000 [==============================] - 357s 7ms/sample - loss: 1.3590 - accuracy: 0.5124 - val_loss: 1.2661 - val_accuracy: 0.5520
Epoch 3/4
50000/50000 [==============================] - 377s 8ms/sample - loss: 1.1981 - accuracy: 0.5787 - val_loss: 1.2625 - val_accuracy: 0.5674
Epoch 4/4
50000/50000 [==============================] - 345s 7ms/sample - loss: 1.0838 - accuracy: 0.6183 - val_loss: 1.1302 - val_accuracy: 0.6083
Total number of epochs run: 4
Gradient Array has the shape: (4, 10)

希望这能回答你的问题。快乐学习。

关于tensorflow - TF2 : Compute gradients in keras callback in non-eager mode,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61568665/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com