作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在学习 forecasting 中的 Pyro 介绍教程,并在训练模型后尝试访问学习到的参数,我对其中一些使用不同的访问方法得到了不同的结果(而对其他人则得到了相同的结果)。
这是教程中精简的可重现代码:
import torch
import pyro
import pyro.distributions as dist
from pyro.contrib.examples.bart import load_bart_od
from pyro.contrib.forecast import ForecastingModel, Forecaster
pyro.enable_validation(True)
pyro.clear_param_store()
pyro.__version__
# '1.3.1'
torch.__version__
# '1.5.0+cu101'
# import & prepare the data
dataset = load_bart_od()
T, O, D = dataset["counts"].shape
data = dataset["counts"][:T // (24 * 7) * 24 * 7].reshape(T // (24 * 7), -1).sum(-1).log()
data = data.unsqueeze(-1)
T0 = 0 # begining
T2 = data.size(-2) # end
T1 = T2 - 52 # train/test split
# define the model class
class Model1(ForecastingModel):
def model(self, zero_data, covariates):
data_dim = zero_data.size(-1)
feature_dim = covariates.size(-1)
bias = pyro.sample("bias", dist.Normal(0, 10).expand([data_dim]).to_event(1))
weight = pyro.sample("weight", dist.Normal(0, 0.1).expand([feature_dim]).to_event(1))
prediction = bias + (weight * covariates).sum(-1, keepdim=True)
assert prediction.shape[-2:] == zero_data.shape
noise_scale = pyro.sample("noise_scale", dist.LogNormal(-5, 5).expand([1]).to_event(1))
noise_dist = dist.Normal(0, noise_scale)
self.predict(noise_dist, prediction)
# fit the model
pyro.set_rng_seed(1)
pyro.clear_param_store()
time = torch.arange(float(T2)) / 365
covariates = torch.stack([time], dim=-1)
forecaster = Forecaster(Model1(), data[:T1], covariates[:T1], learning_rate=0.1)
到目前为止一切顺利;现在,我想检查存储在 Paramstore
中的已学习潜在参数。似乎有不止一种方法可以做到这一点;使用 get_all_param_names()
方法:
for name in pyro.get_param_store().get_all_param_names():
print(name, pyro.param(name).data.numpy())
我明白了
AutoNormal.locs.bias [14.585433]
AutoNormal.scales.bias [0.00631594]
AutoNormal.locs.weight [0.11947815]
AutoNormal.scales.weight [0.00922901]
AutoNormal.locs.noise_scale [-2.0719821]
AutoNormal.scales.noise_scale [0.03469057]
但是使用 named_parameters()
方法:
pyro.get_param_store().named_parameters()
为位置 (locs
) 参数提供相同的值,但为所有 scales
参数提供不同的值:
dict_items([
('AutoNormal.locs.bias', Parameter containing: tensor([14.5854], requires_grad=True)),
('AutoNormal.scales.bias', Parameter containing: tensor([-5.0647], requires_grad=True)),
('AutoNormal.locs.weight', Parameter containing: tensor([0.1195], requires_grad=True)),
('AutoNormal.scales.weight', Parameter containing: tensor([-4.6854], requires_grad=True)),
('AutoNormal.locs.noise_scale', Parameter containing: tensor([-2.0720], requires_grad=True)),
('AutoNormal.scales.noise_scale', Parameter containing: tensor([-3.3613], requires_grad=True))
])
这怎么可能?根据documentation , Paramstore
是一个简单的键值存储;里面只有这六个键:
pyro.get_param_store().get_all_param_names() # .keys() method gives identical result
# result
dict_keys([
'AutoNormal.locs.bias',
'AutoNormal.scales.bias',
'AutoNormal.locs.weight',
'AutoNormal.scales.weight',
'AutoNormal.locs.noise_scale',
'AutoNormal.scales.noise_scale'])
因此,不可能一种方法访问一组项目而另一种方法访问不同的项目。
我是不是漏掉了什么?
最佳答案
pyro.param()
returns transformed parameters在本例中为 scales
的正实数。
关于probabilistic-programming - 不同的 Pyro Paramstore 访问方法给出不同的结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61684499/
我正在学习 forecasting 中的 Pyro 介绍教程,并在训练模型后尝试访问学习到的参数,我对其中一些使用不同的访问方法得到了不同的结果(而对其他人则得到了相同的结果)。 这是教程中精简的可重
我是一名优秀的程序员,十分优秀!