- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
**
代码编辑器:vscode
cmd:anaconda 提示符
我遵循了教程,但为什么会出现此错误?
**
first error was ModuleNotFoundError: No module named 'tensorflow' but i make env and install it second error was ModuleNotFoundError: No module named 'flask' but i make env and install it i fix them and they work on python How can I solve this?
# T81-558: Applications of Deep Neural Networks
# Module 13: Advanced/Other Topics
# Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)
# For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/).
# Deploy simple Keras tabular model with Flask only.
from flask import Flask, request, jsonify
import uuid
import os
from tensorflow.keras.models import load_model
import numpy as np
app = Flask(__name__)
# Used for validation
EXPECTED = {
"cylinders":{"min":3,"max":8},
"displacement":{"min":68.0,"max":455.0},
"horsepower":{"min":46.0,"max":230.0},
"weight":{"min":1613,"max":5140},
"acceleration":{"min":8.0,"max":24.8},
"year":{"min":70,"max":82},
"origin":{"min":1,"max":3}
}
# Load neural network when Flask boots up
model = load_model(os.path.join("../dnn/","mpg_model.h5"))
@app.route('/api/mpg', methods=['POST'])
def calc_mpg():
content = request.json
errors = []
# Check for valid input fields
for name in content:
if name in EXPECTED:
expected_min = EXPECTED[name]['min']
expected_max = EXPECTED[name]['max']
value = content[name]
if value < expected_min or value > expected_max:
errors.append(f"Out of bounds: {name}, has value of: {value}, but should be between {expected_min} and {expected_max}.")
else:
errors.append(f"Unexpected field: {name}.")
# Check for missing input fields
for name in EXPECTED:
if name not in content:
errors.append(f"Missing value: {name}.")
if len(errors) <1:
# Predict
x = np.zeros( (1,7) )
x[0,0] = content['cylinders']
x[0,1] = content['displacement']
x[0,2] = content['horsepower']
x[0,3] = content['weight']
x[0,4] = content['acceleration']
x[0,5] = content['year']
x[0,6] = content['origin']
pred = model.predict(x)
mpg = float(pred[0])
response = {"id":str(uuid.uuid4()),"mpg":mpg,"errors":errors}
else:
# Return errors
response = {"id":str(uuid.uuid4()),"errors":errors}
print(content['displacement'])
return jsonify(response)
if __name__ == '__main__':
app.run(host= '0.0.0.0',debug=True)
#conda
(tf-gpu) (HelloWold) C:\Users\ASUS\t81_558_deep_learning\py>python mpg_server_1.py
2020-05-09 17:25:38.498181: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
Traceback (most recent call last):
File "mpg_server_1.py", line 26, in <module>
model = load_model(os.path.join("../dnn/","mpg_model.h5"))
File "C:\Users\ASUS\Envs\HelloWold\lib\site-packages\tensorflow\python\keras\saving\save.py", line 189, in load_model
loader_impl.parse_saved_model(filepath)
File "C:\Users\ASUS\Envs\HelloWold\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 113, in parse_saved_model
constants.SAVED_MODEL_FILENAME_PB))
OSError: SavedModel file does not exist at: ../dnn/mpg_model.h5/{saved_model.pbtxt|saved_model.pb}
from https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_13_01_flask.ipynb https://www.youtube.com/watch?v=H73m9XvKHug&t=1056s
最佳答案
发生错误是因为您的代码试图加载不存在的模型。从您链接的 Notebook 文件中,您很可能必须运行以下命令:
from werkzeug.wrappers import Request, Response
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
return "Hello World!"
if __name__ == '__main__':
from werkzeug.serving import run_simple
run_simple('localhost', 9000, app)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import EarlyStopping
import pandas as pd
import io
import os
import requests
import numpy as np
from sklearn import metrics
df = pd.read_csv(
"https://data.heatonresearch.com/data/t81-558/auto-mpg.csv",
na_values=['NA', '?'])
cars = df['name']
# Handle missing value
df['horsepower'] = df['horsepower'].fillna(df['horsepower'].median())
# Pandas to Numpy
x = df[['cylinders', 'displacement', 'horsepower', 'weight',
'acceleration', 'year', 'origin']].values
y = df['mpg'].values # regression
# Split into validation and training sets
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.25, random_state=42)
# Build the neural network
model = Sequential()
model.add(Dense(25, input_dim=x.shape[1], activation='relu')) # Hidden 1
model.add(Dense(10, activation='relu')) # Hidden 2
model.add(Dense(1)) # Output
model.compile(loss='mean_squared_error', optimizer='adam')
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3, patience=5, verbose=1, mode='auto',
restore_best_weights=True)
model.fit(x_train,y_train,validation_data=(x_test,y_test),callbacks=[monitor],verbose=2,epochs=1000)
pred = model.predict(x_test)
# Measure RMSE error. RMSE is common for regression.
score = np.sqrt(metrics.mean_squared_error(pred,y_test))
print(f"After load score (RMSE): {score}")
model.save(os.path.join("./dnn/","mpg_model.h5"))
model = load_model(os.path.join("../dnn/","mpg_model.h5"))
应该改为
model = load_model(os.path.join("./dnn/","mpg_model.h5"))
关于python - OSError : SavedModel file does not exist at: . ./dnn/mpg_model.h5/{saved_model.pbtxt|saved_model.pb},我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61699140/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!