- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Pytorch 在 COCO 数据集上训练一个 Faster RCNN 神经网络。
我遵循了下一个教程:
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
训练结果如下:
Epoch: [6] [ 0/119] eta: 0:01:16 lr: 0.000050 loss: 0.3780 (0.3780) loss_classifier: 0.1290 (0.1290) loss_box_reg: 0.1848 (0.1848) loss_objectness: 0.0239 (0.0239) loss_rpn_box_reg: 0.0403 (0.0403) time: 0.6451 data: 0.1165 max mem: 3105
Epoch: [6] [ 10/119] eta: 0:01:13 lr: 0.000050 loss: 0.4129 (0.4104) loss_classifier: 0.1277 (0.1263) loss_box_reg: 0.2164 (0.2059) loss_objectness: 0.0244 (0.0309) loss_rpn_box_reg: 0.0487 (0.0473) time: 0.6770 data: 0.1253 max mem: 3105
Epoch: [6] [ 20/119] eta: 0:01:07 lr: 0.000050 loss: 0.4165 (0.4302) loss_classifier: 0.1277 (0.1290) loss_box_reg: 0.2180 (0.2136) loss_objectness: 0.0353 (0.0385) loss_rpn_box_reg: 0.0499 (0.0491) time: 0.6843 data: 0.1265 max mem: 3105
Epoch: [6] [ 30/119] eta: 0:01:00 lr: 0.000050 loss: 0.4205 (0.4228) loss_classifier: 0.1271 (0.1277) loss_box_reg: 0.2125 (0.2093) loss_objectness: 0.0334 (0.0374) loss_rpn_box_reg: 0.0499 (0.0484) time: 0.6819 data: 0.1274 max mem: 3105
Epoch: [6] [ 40/119] eta: 0:00:53 lr: 0.000050 loss: 0.4127 (0.4205) loss_classifier: 0.1209 (0.1265) loss_box_reg: 0.2102 (0.2085) loss_objectness: 0.0315 (0.0376) loss_rpn_box_reg: 0.0475 (0.0479) time: 0.6748 data: 0.1282 max mem: 3105
Epoch: [6] [ 50/119] eta: 0:00:46 lr: 0.000050 loss: 0.3973 (0.4123) loss_classifier: 0.1202 (0.1248) loss_box_reg: 0.1947 (0.2039) loss_objectness: 0.0315 (0.0366) loss_rpn_box_reg: 0.0459 (0.0470) time: 0.6730 data: 0.1297 max mem: 3105
Epoch: [6] [ 60/119] eta: 0:00:39 lr: 0.000050 loss: 0.3900 (0.4109) loss_classifier: 0.1206 (0.1248) loss_box_reg: 0.1876 (0.2030) loss_objectness: 0.0345 (0.0365) loss_rpn_box_reg: 0.0431 (0.0467) time: 0.6692 data: 0.1276 max mem: 3105
Epoch: [6] [ 70/119] eta: 0:00:33 lr: 0.000050 loss: 0.3984 (0.4085) loss_classifier: 0.1172 (0.1242) loss_box_reg: 0.2069 (0.2024) loss_objectness: 0.0328 (0.0354) loss_rpn_box_reg: 0.0458 (0.0464) time: 0.6707 data: 0.1252 max mem: 3105
Epoch: [6] [ 80/119] eta: 0:00:26 lr: 0.000050 loss: 0.4153 (0.4113) loss_classifier: 0.1178 (0.1246) loss_box_reg: 0.2123 (0.2036) loss_objectness: 0.0328 (0.0364) loss_rpn_box_reg: 0.0480 (0.0468) time: 0.6744 data: 0.1264 max mem: 3105
Epoch: [6] [ 90/119] eta: 0:00:19 lr: 0.000050 loss: 0.4294 (0.4107) loss_classifier: 0.1178 (0.1238) loss_box_reg: 0.2098 (0.2021) loss_objectness: 0.0418 (0.0381) loss_rpn_box_reg: 0.0495 (0.0466) time: 0.6856 data: 0.1302 max mem: 3105
Epoch: [6] [100/119] eta: 0:00:12 lr: 0.000050 loss: 0.4295 (0.4135) loss_classifier: 0.1171 (0.1235) loss_box_reg: 0.2124 (0.2034) loss_objectness: 0.0460 (0.0397) loss_rpn_box_reg: 0.0498 (0.0469) time: 0.6955 data: 0.1345 max mem: 3105
Epoch: [6] [110/119] eta: 0:00:06 lr: 0.000050 loss: 0.4126 (0.4117) loss_classifier: 0.1229 (0.1233) loss_box_reg: 0.2119 (0.2024) loss_objectness: 0.0430 (0.0394) loss_rpn_box_reg: 0.0481 (0.0466) time: 0.6822 data: 0.1306 max mem: 3105
Epoch: [6] [118/119] eta: 0:00:00 lr: 0.000050 loss: 0.4006 (0.4113) loss_classifier: 0.1171 (0.1227) loss_box_reg: 0.2028 (0.2028) loss_objectness: 0.0366 (0.0391) loss_rpn_box_reg: 0.0481 (0.0466) time: 0.6583 data: 0.1230 max mem: 3105
Epoch: [6] Total time: 0:01:20 (0.6760 s / it)
creating index...
index created!
Test: [ 0/59] eta: 0:00:15 model_time: 0.1188 (0.1188) evaluator_time: 0.0697 (0.0697) time: 0.2561 data: 0.0634 max mem: 3105
Test: [58/59] eta: 0:00:00 model_time: 0.1086 (0.1092) evaluator_time: 0.0439 (0.0607) time: 0.2361 data: 0.0629 max mem: 3105
Test: Total time: 0:00:14 (0.2378 s / it)
Averaged stats: model_time: 0.1086 (0.1092) evaluator_time: 0.0439 (0.0607)
Accumulating evaluation results...
DONE (t=0.02s).
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.210
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.643
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.079
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.210
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.011
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.096
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.333
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.333
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Epoch: [7] [ 0/119] eta: 0:01:16 lr: 0.000050 loss: 0.3851 (0.3851) loss_classifier: 0.1334 (0.1334) loss_box_reg: 0.1845 (0.1845) loss_objectness: 0.0287 (0.0287) loss_rpn_box_reg: 0.0385 (0.0385) time: 0.6433 data: 0.1150 max mem: 3105
Epoch: [7] [ 10/119] eta: 0:01:12 lr: 0.000050 loss: 0.3997 (0.4045) loss_classifier: 0.1250 (0.1259) loss_box_reg: 0.1973 (0.2023) loss_objectness: 0.0292 (0.0303) loss_rpn_box_reg: 0.0479 (0.0459) time: 0.6692 data: 0.1252 max mem: 3105
Epoch: [7] [ 20/119] eta: 0:01:07 lr: 0.000050 loss: 0.4224 (0.4219) loss_classifier: 0.1250 (0.1262) loss_box_reg: 0.2143 (0.2101) loss_objectness: 0.0333 (0.0373) loss_rpn_box_reg: 0.0493 (0.0484) time: 0.6809 data: 0.1286 max mem: 3105
Epoch: [7] [ 30/119] eta: 0:01:00 lr: 0.000050 loss: 0.4120 (0.4140) loss_classifier: 0.1191 (0.1221) loss_box_reg: 0.2113 (0.2070) loss_objectness: 0.0357 (0.0374) loss_rpn_box_reg: 0.0506 (0.0475) time: 0.6834 data: 0.1316 max mem: 3105
Epoch: [7] [ 40/119] eta: 0:00:53 lr: 0.000050 loss: 0.4013 (0.4117) loss_classifier: 0.1118 (0.1210) loss_box_reg: 0.2079 (0.2063) loss_objectness: 0.0357 (0.0371) loss_rpn_box_reg: 0.0471 (0.0473) time: 0.6780 data: 0.1304 max mem: 3105
Epoch: [7] [ 50/119] eta: 0:00:46 lr: 0.000050 loss: 0.3911 (0.4035) loss_classifier: 0.1172 (0.1198) loss_box_reg: 0.1912 (0.2017) loss_objectness: 0.0341 (0.0356) loss_rpn_box_reg: 0.0449 (0.0464) time: 0.6768 data: 0.1314 max mem: 3105
Epoch: [7] [ 60/119] eta: 0:00:39 lr: 0.000050 loss: 0.3911 (0.4048) loss_classifier: 0.1186 (0.1213) loss_box_reg: 0.1859 (0.2013) loss_objectness: 0.0334 (0.0360) loss_rpn_box_reg: 0.0412 (0.0462) time: 0.6729 data: 0.1306 max mem: 3105
Epoch: [7] [ 70/119] eta: 0:00:33 lr: 0.000050 loss: 0.4046 (0.4030) loss_classifier: 0.1177 (0.1209) loss_box_reg: 0.2105 (0.2008) loss_objectness: 0.0359 (0.0354) loss_rpn_box_reg: 0.0462 (0.0459) time: 0.6718 data: 0.1282 max mem: 3105
Epoch: [7] [ 80/119] eta: 0:00:26 lr: 0.000050 loss: 0.4125 (0.4067) loss_classifier: 0.1187 (0.1221) loss_box_reg: 0.2105 (0.2022) loss_objectness: 0.0362 (0.0362) loss_rpn_box_reg: 0.0469 (0.0462) time: 0.6725 data: 0.1285 max mem: 3105
Epoch: [7] [ 90/119] eta: 0:00:19 lr: 0.000050 loss: 0.4289 (0.4068) loss_classifier: 0.1288 (0.1223) loss_box_reg: 0.2097 (0.2009) loss_objectness: 0.0434 (0.0375) loss_rpn_box_reg: 0.0479 (0.0461) time: 0.6874 data: 0.1327 max mem: 3105
Epoch: [7] [100/119] eta: 0:00:12 lr: 0.000050 loss: 0.4222 (0.4086) loss_classifier: 0.1223 (0.1221) loss_box_reg: 0.2101 (0.2021) loss_objectness: 0.0405 (0.0381) loss_rpn_box_reg: 0.0483 (0.0463) time: 0.6941 data: 0.1348 max mem: 3105
Epoch: [7] [110/119] eta: 0:00:06 lr: 0.000050 loss: 0.4082 (0.4072) loss_classifier: 0.1196 (0.1220) loss_box_reg: 0.2081 (0.2013) loss_objectness: 0.0350 (0.0379) loss_rpn_box_reg: 0.0475 (0.0461) time: 0.6792 data: 0.1301 max mem: 3105
Epoch: [7] [118/119] eta: 0:00:00 lr: 0.000050 loss: 0.4070 (0.4076) loss_classifier: 0.1196 (0.1223) loss_box_reg: 0.2063 (0.2016) loss_objectness: 0.0313 (0.0375) loss_rpn_box_reg: 0.0475 (0.0462) time: 0.6599 data: 0.1255 max mem: 3105
Epoch: [7] Total time: 0:01:20 (0.6763 s / it)
creating index...
index created!
Test: [ 0/59] eta: 0:00:14 model_time: 0.1194 (0.1194) evaluator_time: 0.0633 (0.0633) time: 0.2511 data: 0.0642 max mem: 3105
Test: [58/59] eta: 0:00:00 model_time: 0.1098 (0.1102) evaluator_time: 0.0481 (0.0590) time: 0.2353 data: 0.0625 max mem: 3105
Test: Total time: 0:00:13 (0.2371 s / it)
Averaged stats: model_time: 0.1098 (0.1102) evaluator_time: 0.0481 (0.0590)
Accumulating evaluation results...
DONE (t=0.02s).
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.210
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.649
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.079
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.210
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.011
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.095
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.334
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.334
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
最佳答案
您需要跟踪测试数据集的损失(或其他一些指标,如召回率)。请注意这部分代码:
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
evaluate(model, data_loader_test, device=device)
train_one_epoch
和
evaluate
定义
here .评估函数返回
CocoEvaluator
类型的对象,但您可以修改代码,使其返回测试损失(您需要以某种方式从
CocoEvaluator
对象中提取指标,或者编写您自己的指标评估)。
关于neural-network - 使用 Pytorch 将在 Faster RCNN(COCO 数据集)上训练的最佳模型保存到 "overfitting",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61711103/
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!