- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试用 解决 mVRP加油在几个车站(仅用于补货)与 python 。我发现了这个:https://github.com/google/or-tools/blob/master/examples/cpp/cvrptw_with_refueling.cc .
我引用了github的代码,但是我的代码有一些问题。
1)我在python中遵循了方式(来自上面的github代码)
(github代码)
const int64 kFuelCapacity = kXMax + kYMax;
routing.AddDimension(
routing.RegisterTransitCallback([&locations, &manager](int64 i, int64 j) {
return locations.NegManhattanDistance(manager.IndexToNode(i),
manager.IndexToNode(j));
}),
kFuelCapacity, kFuelCapacity, /*fix_start_cumul_to_zero=*/false, kFuel);
const RoutingDimension& fuel_dimension = routing.GetDimensionOrDie(kFuel);
for (int order = 0; order < routing.Size(); ++order) {
// Only let slack free for refueling nodes.
if (!IsRefuelNode(order) || routing.IsStart(order)) {
fuel_dimension.SlackVar(order)->SetValue(0);
}
// Needed to instantiate fuel quantity at each node.
routing.AddVariableMinimizedByFinalizer(fuel_dimension.CumulVar(order));
fuel_callback_index = routing.RegisterTransitCallback(fuel_callback)
routing.AddDimension(
fuel_callback_index,
data['MFuel'],
data['MFuel'],
False,
'Fuel'
)
fuel_dimension = routing.GetDimensionOrDie('Fuel')
for i in range(routing.Size()):
if (i not in data['vStation']) or routing.IsStart(i):
idx = manager.NodeToIndex(i)
fuel_dimension.SlackVar(idx).SetValue(0)
routing.AddVariableMinimizedByFinalizer(fuel_dimension.CumulVar(i))
idx = manager.NodeToIndex(i)
在 for 循环中到
SetValue
的
fuel_dimension
,它给了我如下错误:
Process finished with exit code -1073741819 (0xC0000005)
i
而不是
idx
(来自
NodeToIndex
),错误不会发生。谁能解释一下?
8 (fuel: 0) -> 9 (fuel: 0) -> 7 (fuel: 3) -> 11 (fuel: 2) -> 6 (fuel: 4) -> 4 (fuel: 3) -> 5 (fuel: 1) -> 10 (fuel: 0) -> 3 (fuel: 2) -> 2 (fuel: 1) -> 1 (fuel: 0) -> 0
from __future__ import print_function
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def print_solution(data, manager, routing, solution):
max_route_distance = 0
fuel_dimension = routing.GetDimensionOrDie('Fuel')
for vehicle_id in range(data['num_vehicles']):
index = routing.Start(vehicle_id)
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
route_distance = 0
while not routing.IsEnd(index):
fuel_var = fuel_dimension.CumulVar(index)
plan_output += ' {} (fuel: {}) -> '.format(manager.IndexToNode(index), solution.Value(fuel_var))
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(previous_index, index, vehicle_id)
plan_output += '{}\n'.format(manager.IndexToNode(index))
plan_output += 'Distance of the route: {}m\n'.format(route_distance)
max_route_distance = max(route_distance, max_route_distance)
def manhattan_distance(position_1, position_2):
return (abs(position_1[0] - position_2[0]) +
abs(position_1[1] - position_2[1]))
def main():
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
data['num_vehicles'],
data['vStart'],
data['vEnd'])
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
# Create and register a transit callback.
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distance_matrix'][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
def fuel_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return -manhattan_distance(data['locations'][from_node], data['locations'][to_node])
# Add Distance constraint.
dimension_name = 'Distance'
routing.AddDimension(
transit_callback_index,
0, # no slack
100, # vehicle maximum travel distance
True, # start cumul to zero
dimension_name)
distance_dimension = routing.GetDimensionOrDie(dimension_name)
distance_dimension.SetGlobalSpanCostCoefficient(100)
fuel_callback_index = routing.RegisterTransitCallback(fuel_callback)
routing.AddDimension(
fuel_callback_index,
data['MFuel'],
data['MFuel'],
False,
'Fuel'
)
fuel_dimension = routing.GetDimensionOrDie('Fuel')
for i in range(routing.Size()):
if (i not in data['vStation']) or routing.IsStart(i):
idx = manager.NodeToIndex(i)
fuel_dimension.SlackVar(i).SetValue(0)
routing.AddVariableMinimizedByFinalizer(fuel_dimension.CumulVar(i))
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Print solution on console.
if solution:
print_solution(data, manager, routing, solution)
if __name__ == '__main__':
main()
import numpy as np
from scipy.spatial import distance
np.random.seed(0)
# problem settings
gridX, gridY = 10, 10
N_vehicles = 5
MFuel = 10
coord_stations = [(1,1), (1,4), (1,7), (4,2), (4,5), (4,8), (7,1), (8,4), (4,2), (7,7)]
coord_starts = [(1,1),(1,7),(4,2),(4,8),(8,4)]
coord_srfs = [(x,y) for x in range(gridX) for y in range(gridY) if (x,y) not in coord_stations]
# dummies
dummy_depot = [(0,0)]
N_dummy = 5
N_dummySta = N_dummy * len(coord_stations)
# prerequisite
MFuels = [MFuel] * N_vehicles
N_v = 1 + len(coord_srfs) + N_dummySta
# make map w/ all vertices
map = {}
idx = {}
coord2vertex = {}
for (x,y) in [(x,y) for x in range(gridX) for y in range(gridY)]:
coord2vertex[(x,y)] = []
map[0] = dummy_depot[0]
idx['depot'] = 0
srfs_idx = []
for i in range(len(coord_srfs)):
map[i+1] = coord_srfs[i]
srfs_idx.append(i+1)
coord2vertex[coord_srfs[i]].append(i+1)
idx['surfaces'] = srfs_idx
stas_idx = []
for i in range(N_dummySta):
sta_idx = i//N_dummy
map[i+idx['surfaces'][-1]+1] = coord_stations[sta_idx]
stas_idx.append(i+idx['surfaces'][-1]+1)
coord2vertex[coord_stations[sta_idx]].append(i+idx['surfaces'][-1]+1)
idx['stations'] = stas_idx
# make distance matrix w/ all vertices
dist_mat = np.zeros((N_v, N_v), dtype=int)
for i in range(N_v):
for j in range(N_v):
if i == 0 or j == 0:
dist_mat[i,j] = 0
else:
if i == j:
dist_mat[i,j] = 0
else:
dist_mat[i,j] = sum(abs(np.array(map[j])-np.array(map[i])))
distance_matrix = dist_mat.tolist()
v_starts = [coord2vertex[coord][0] for coord in coord_starts]
data = dict()
data['distance_matrix'] = distance_matrix
data['num_vehicles'] = N_vehicles
data['vStart'] = v_starts
data['vEnd'] = [0] * N_vehicles
data['MFuel'] = MFuel
data['vStation'] = idx['stations']
data['vSrf'] = idx['surfaces']
data['locations'] = list(map.values())
data['num_locations'] = len(data['locations'])
print('Problem is generated.\n# of vehicles: {} (w/ capacities: {})\n# of tasks: {} (w/ locations: {} & demands: {})\n'.format(N_vehicles, v_capas, N_tasks, coord_tasks, t_demands))
最佳答案
作为盲目修复(因为你没有提供 data
来测试),我会重写:
# Add Fuel Constraint.
dimension_name = 'Fuel'
def fuel_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return -manhattan_distance(data['locations'][from_node], data['locations'][to_node])
fuel_callback_index = routing.RegisterTransitCallback(fuel_callback)
routing.AddDimension(
fuel_callback_index,
data['MFuel'],
data['MFuel'],
False,
dimension_name)
fuel_dimension = routing.GetDimensionOrDie(dimension_name)
for i in range(len(data['distance_matrix'])):
if (i not in data['vStation']) and
(i not in data['vStart']) and
(i not in data['vEnd']):
idx = manager.NodeToIndex(i)
fuel_dimension.SlackVar(idx).SetValue(0)
routing.AddVariableMinimizedByFinalizer(fuel_dimension.CumulVar(idx))
int()
throw !:
def manhattan_distance(position_1, position_2):
return int(abs(position_1[0] - position_2[0]) +
abs(position_1[1] - position_2[1]))
关于python - Google ortools - mVRP 与加油,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61826584/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!