- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
time = 1:100
head(y)
0.07841589 0.07686316 0.07534116 0.07384931 0.07238699 0.07095363
plot(time,y)
最佳答案
注:这个答案已经完全改写自 original ,
这在几个方面存在缺陷(感谢评论者强调这些)。我希望这个新答案是正确的。
您需要一个模型来拟合数据。
在不知道模型的全部细节的情况下,假设这是一个
exponential growth model ,
哪一个可以写成:y = a * e r*t
其中 y 是您的测量变量,t 是测量它的时间,
a 是 t = 0 时 y 的值,r 是增长常数。
我们要估计 a 和 r。
这是一个非线性问题,因为我们要估计指数 r。
但是,在这种情况下,我们可以使用一些代数并将其转换为线性方程,方法是对两边取对数并求解(记住
logarithmic rules ), 导致:
log(y) = log(a) + r * t
我们可以用一个例子来形象化,通过从我们的模型中生成一条曲线,假设 a 和 r 的一些值:
t <- 1:100 # these are your time points
a <- 10 # assume the size at t = 0 is 10
r <- 0.1 # assume a growth constant
y <- a*exp(r*t) # generate some y observations from our exponential model
# visualise
par(mfrow = c(1, 2))
plot(t, y) # on the original scale
plot(t, log(y)) # taking the log(y)
nls()
函数)lm()
函数)set.seed(12) # for reproducible results
# errors constant across time - additive
y_add <- a*exp(r*t) + rnorm(length(t), sd = 5000) # or: rnorm(length(t), mean = a*exp(r*t), sd = 5000)
# errors grow as y grows - multiplicative (constant on the log-scale)
y_mult <- a*exp(r*t + rnorm(length(t), sd = 1)) # or: rlnorm(length(t), mean = log(a) + r*t, sd = 1)
# visualise
par(mfrow = c(1, 2))
plot(t, y_add, main = "additive error")
lines(t, a*exp(t*r), col = "red")
plot(t, y_mult, main = "multiplicative error")
lines(t, a*exp(t*r), col = "red")
nls()
,因为误差是恒定的
nls()
我们需要为优化算法指定一些起始值(尝试“猜测”这些是什么,因为
nls()
经常难以收敛于解决方案)。
add_nls <- nls(y_add ~ a*exp(r*t),
start = list(a = 0.5, r = 0.2))
coef(add_nls)
# a r
# 11.30876845 0.09867135
coef()
函数我们可以得到两个参数的估计值。
plot(t, resid(add_nls))
abline(h = 0, lty = 2)
y_mult
模拟值),我们应该使用
lm()
在对数转换的数据上,因为
mult_lm <- lm(log(y_mult) ~ t)
coef(mult_lm)
# (Intercept) t
# 2.39448488 0.09837215
(Intercept)
相当于我们模型的 log(a) 和
t
是时间变量的系数,所以等价于我们的 r。
(Intercept)
我们可以取它的指数 (
exp(2.39448488)
),给我们 ~10.96,这非常接近我们的模拟值。
nls
函数代替:
mult_nls <- nls(y_mult ~ a*exp(r*t), start = list(a = 0.5, r = 0.2))
coef(mult_nls)
# a r
# 281.06913343 0.06955642
# get the model's coefficients
lm_coef <- coef(mult_lm)
nls_coef <- coef(mult_nls)
# make the plot
plot(t, y_mult)
lines(t, a*exp(r*t), col = "brown", lwd = 5)
lines(t, exp(lm_coef[1])*exp(lm_coef[2]*t), col = "dodgerblue", lwd = 2)
lines(t, nls_coef[1]*exp(nls_coef[2]*t), col = "orange2", lwd = 2)
legend("topleft", col = c("brown", "dodgerblue", "orange2"),
legend = c("known model", "nls fit", "lm fit"), lwd = 3)
lm()
对数转换数据的拟合明显优于
nls()
拟合原始数据。
plot(t, resid(mult_nls))
abline(h = 0, lty = 2)
关于r - R中的指数曲线拟合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31851936/
我正在尝试创建 treasury yield curve 的图表比较两个不同日期的汇率。我很难将两条曲线组合起来并创建一个干净的图形。 我的问题:如何将两条 yield 曲线绘制在一起, yield
我在 R 平台中使用 randomForest 包进行分类任务。 rf_object<-randomForest(data_matrix, label_factor, cutoff=c(k,1-k))
我的设计师给我设计了这个设计,但我不知道如何最好地处理图像上方和下方的曲线。 我考虑过 clip-path 但不知道如何 flex 它。如果可以的话,我不想使用图像。 最佳答案 您可以使用 borde
我正在使用 Canvas 中的笔触和路径来制作两条线,我希望它们像波浪效果一样弯曲。而不是在 Photoshop 中创建实际图像来实现此目的。 谁能帮忙得到如下图所示的曲线? 我还想在末端实现圆 An
我正在尝试开发一种可以处理图像骨架的路径/曲线的代码。我想要一个来自两点之间骨架的点 vector 。 这段代码加了点就结束了,没找到解决办法。 #include "opencv2/highgui/
现在需要帮助。我可以用MKPolyline和MKPolylineView画线,但是如何在MKMapView上的两个坐标之间画弧线或曲线呢?非常感谢。 最佳答案 在回答问题之前,重要的是要提到 MKOv
我正在尝试应用 sklearn 的想法 ROC extension to multiclass到我的数据集。我的每类 ROC 曲线看起来都找到了一条直线,取消显示曲线波动的 sklearn 示例。 我
我有以下概念问题,我无法理解。 以下是调查数据示例,其中我有一个时间列,指示某人需要多长时间才能回答某个问题。 现在,我感兴趣的是清洁量将如何根据此阈值发生变化,即如果我增加阈值会发生什么,如果我降低
如何为使用视频的对象检测应用绘制每个窗口的误报率与未命中率(或误报概率)和 ROC(接收器操作曲线)的图表?如何确定误报和命中的数量?一个例子是很有用。 最佳答案 它很简单。将所有真正 (H0) 值存
我正在尝试绘制随机森林分类的 ROC 曲线。绘图有效,但我认为我绘制了错误的数据,因为生成的绘图只有一个点(准确性)。 这是我使用的代码: set.seed(55) data.controls <
我有如下两个模型: library(mlbench) data(Sonar) library(caret) set.seed(998) my_data <- Sonar fitControl <-
是否可以仅通过查看其 ROC 曲线来了解分类器是否过度拟合?我看到如果它的 AUC 太高(例如 98%)可能会过度拟合,但这也可能意味着分类器非常好。有没有办法区分这两种情况? 最佳答案 简短的回答:
我正在 JavaFX 中创建一个图形,它应该由有向边连接。最好是双三次曲线。有谁知道如何添加箭头? 箭头当然应该根据曲线的末端进行旋转。 这是一个没有箭头的简单示例: import javafx.ap
我需要对我正在尝试的技术进行一些说明。我正在尝试将一个实体从 A 点移动到 B 点,但我不希望该实体沿直线移动。 例如,如果实体位于 x: 0, y:0 并且我想到达点 x:50, y: 0,我希望实
我试图在曲线下方绘制阴影区域,但阴影区域位于曲线上方。谁能告诉我我的代码有什么问题? x=seq(0,30) y1=exp(-0.1*x) plot(x,y1,type="l",lwd=2,col="
我需要对我正在尝试的技术进行一些说明。我正在尝试将一个实体从 A 点移动到 B 点,但我不希望该实体沿直线移动。 例如,如果实体位于 x: 0, y:0 并且我想到达点 x:50, y: 0,我希望实
我有一个如下所示的模型: library(mlbench) data(Sonar) library(caret) set.seed(998) my_data <- Sonar fitControl <
有没有办法从pyspark中的Spark ML获取ROC曲线上的点?在文档中,我看到了一个 Scala 的例子,但不是 python:https://spark.apache.org/docs/2.1
我正在尝试使用Local Outlier Factor (LOF)算法,并想绘制 ROC 曲线。问题是,scikit-learn 提供的库不会为每个预测生成分数。 那么,有什么办法可以解决这个问题吗?
我目前正在使用 GDI+ 绘制折线图,并使用 Graphics.DrawCurve 来平滑线条。问题是曲线并不总是与我输入的点匹配,这使得曲线在某些点上超出了图形框架,如下所示(红色是 Graph
我是一名优秀的程序员,十分优秀!