gpt4 book ai didi

python - 移动多索引数据框中缺少日期的列

转载 作者:行者123 更新时间:2023-12-04 09:59:14 26 4
gpt4 key购买 nike

我想移动多索引数据框中的一列,以计算具有滞后自变量的回归模型。由于我的时间序列缺少值,我只想改变已知前几天的值。 df 看起来像这样:

                cost
ID day
1 31.01.2020 0
1 03.02.2020 0
1 04.02.2020 0.12
1 05.02.2020 0
1 06.02.2020 0
1 07.02.2020 0.08
1 10.02.2020 0
1 11.02.2020 0
1 12.02.2020 0.03
1 13.02.2020 0.1
1 14.02.2020 0

所需的输出是这样的:
                cost   cost_lag
ID day
1 31.01.2020 0 NaN
1 03.02.2020 0 NaN
1 04.02.2020 0.12 0
1 05.02.2020 0 0.12
1 06.02.2020 0 0
1 07.02.2020 0.08 0
1 10.02.2020 0 NaN
1 11.02.2020 0 0
1 12.02.2020 0.03 0
1 13.02.2020 0.1 0.03
1 14.02.2020 0 0.1

基于 this answer to a similar question我尝试了以下方法:
df['cost_lag'] = df.groupby(['id'])['cost'].shift(1)[df.reset_index().day == df.reset_index().day.shift(1) + datetime.timedelta(days=1)]

但这会导致我不明白的错误消息:
IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match

我还尝试按照建议的方法来填补缺失的日期 here :
ams_spend_ranking_df = ams_spend_ranking_df.index.get_level_values(1).apply(lambda x: datetime.datetime(x, 1, 1))

再次导致错误消息并没有启发我:
AttributeError: 'DatetimeIndex' object has no attribute 'apply'

长话短说 :如果前一天没有数据,如何将成本列移动 1 天并添加 NaN?

最佳答案

您可以通过 DataFrameGroupBy.resample 添加所有缺失的日期时间与 Resampler.asfreq :

df1 = df.reset_index(level=0).groupby(['ID'])['cost'].resample('d').asfreq()
print (df1)
ID day
1 2020-01-31 0.00
2020-02-01 NaN
2020-02-02 NaN
2020-02-03 0.00
2020-02-04 0.12
2020-02-05 0.00
2020-02-06 0.00
2020-02-07 0.08
2020-02-08 NaN
2020-02-09 NaN
2020-02-10 0.00
2020-02-11 0.00
2020-02-12 0.03
2020-02-13 0.10
2020-02-14 0.00
Name: cost, dtype: float64

因此,如果将您的解决方案与 DataFrameGroupBy.shift 一起使用它像需要一样工作:
df['cost_lag'] = df1.groupby('ID').shift(1)
print (df)
cost cost_lag
ID day
1 2020-01-31 0.00 NaN
2020-02-03 0.00 NaN
2020-02-04 0.12 0.00
2020-02-05 0.00 0.12
2020-02-06 0.00 0.00
2020-02-07 0.08 0.00
2020-02-10 0.00 NaN
2020-02-11 0.00 0.00
2020-02-12 0.03 0.00
2020-02-13 0.10 0.03
2020-02-14 0.00 0.10

关于python - 移动多索引数据框中缺少日期的列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61867052/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com