- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想用两个输入(一个文本输入和一些数字特征)训练一个 Keras 模型,但我很难让它工作。我已经按照 Tensorflow documentation about models with multiple inputs 中的描述设置了一个模型:
import tensorflow as tf
from tensorflow.keras import Input, Model, models, layers
def build_model():
input1 = Input(shape=(50,), dtype=tf.int32, name='x1')
input2 = Input(shape=(1,), dtype=tf.float32, name='x2')
y1 = layers.Embedding(1000, 10, input_length=50)(input1)
y1 = layers.Flatten()(y1)
y = layers.Concatenate(axis=1)([y1, input2])
y = layers.Dense(1)(y)
return Model(inputs=[input1, input2], outputs=y)
构建该模型也能正常工作:
model = build_model()
model.compile(loss='mse')
model.summary()
您可以在 this gist 中找到 summary()
的输出.
然后需要一些(虚拟)数据来适应模型:
def make_dummy_data():
X1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([100, 50], maxval=1000, dtype=tf.int32))
X2 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([100, 1], dtype=tf.float32))
X = tf.data.Dataset.zip((X1, X2)).map(lambda x1, x2: {'x1': x1, 'x2': x2})
y_true = tf.data.Dataset.from_tensor_slices(tf.random.uniform([100, 1], dtype=tf.float32))
return X, y_true
X, y_true = make_dummy_data()
Xy = tf.data.Dataset.zip((X, y_true))
model.fit(Xy, batch_size=32)
...但现在 fit()
失败并出现一条无法理解的错误消息(请参阅 full message here ),该消息以(可能相关的)警告开头:
WARNING:tensorflow:Model was constructed with shape (None, 50) for input Tensor("x1:0", shape=(None, 50), dtype=int32), but it was called on an input with incompatible shape (50, 1).
咦,尺寸为 1 的额外维度从何而来?而且,我该如何摆脱它?
还有一件事:通过移除 Embedding
层进一步简化这个虚拟模型确实突然让模型运行了。
如果你想玩上面的例子,我准备了a notebook on Google Colab for it .任何帮助表示赞赏。
最佳答案
作为 fit
的文档状态:
batch_size
Integer orNone
. Number of samples per gradient update. If unspecified,batch_size
will default to 32. Do not specify thebatch_size
if your data is in the form of datasets, generators, orkeras.utils.Sequence
instances (since they generate batches).
也就是说,如果您使用数据集来训练您的模型,则预计它会提供批处理,而不是单个示例。形状 (50, 1)
可能来自 Keras,假设单个 50 元素示例实际上是一批 50 个 1 元素示例。
您可以像这样简单地修复它:
Xy = tf.data.Dataset.zip((X, y_true)).batch(32)
model.fit(Xy)
关于python - 如何在 Tensorflow 2.2 中训练具有多个输入的 Keras 模型?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61959517/
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!