gpt4 book ai didi

r - 从 R 中的嵌套列表中提取数据

转载 作者:行者123 更新时间:2023-12-04 09:51:04 32 4
gpt4 key购买 nike

我已经从 google_reverse_code API 下载了一个地址列表,但是对于包含纬度和经度信息的地点列表,因为我是 R 的新手。我不知道如何提取有用的信息。下载数据库的所有代码都在问题的底部。

列表的结构一般是这样的。

`$ 60  :List of 1
..$ results:'data.frame': 1 obs. of 5 variables:
.. ..$ address_components:List of 1
.. .. ..$ :'data.frame': 8 obs. of 3 variables:
.. .. .. ..$ long_name : chr [1:8] "119" "Avenida Diego Díaz de Berlanga"
"Jardines de Anahuac 2do Sector" "San Nicolás de los Garza" ...
.. .. .. ..$ short_name: chr [1:8] "119" "Avenida Diego Díaz de Berlanga"
"Jardines de Anahuac 2do Sector" "San Nicolás de los Garza" ...
.. .. .. ..$ types :List of 8
.. .. .. .. ..$ : chr "street_number"
.. .. .. .. ..$ : chr "route"
.. .. .. .. ..$ : chr [1:3] "political" "sublocality" "sublocality_level_1"
.. .. .. .. ..$ : chr [1:2] "locality" "political"
.. .. .. .. ..$ : chr [1:2] "administrative_area_level_2" "political"
.. .. .. .. ..$ : chr [1:2] "administrative_area_level_1" "political"
.. .. .. .. ..$ : chr [1:2] "country" "political"
.. .. .. .. ..$ : chr "postal_code"
.. ..$ formatted_address : chr "Avenida Diego Díaz de Berlanga 119, Jardines
de Anahuac 2do Sector, 66444 San Nicolás de los Garza, N.L., Mexico"
.. ..$ geometry :'data.frame': 1 obs. of 3 variables:
.. .. ..$ location :'data.frame': 1 obs. of 2 variables:
.. .. .. ..$ lat: num 25.7
.. .. .. ..$ lng: num -100
.. .. ..$ location_type: chr "ROOFTOP"
.. .. ..$ viewport :'data.frame': 1 obs. of 2 variables:
.. .. .. ..$ northeast:'data.frame': 1 obs. of 2 variables:
.. .. .. .. ..$ lat: num 25.7
.. .. .. .. ..$ lng: num -100
.. .. .. ..$ southwest:'data.frame': 1 obs. of 2 variables:
.. .. .. .. ..$ lat: num 25.7
.. .. .. .. ..$ lng: num -100
.. ..$ place_id : chr "ChIJRY_wPdqUYoYRTJetT6AJETA"
.. ..$ types :List of 1
.. .. ..$ : chr "street_address"

我需要这些信息作为数据框执行我的分析。信息具体为 c(latitude, longitude, formatted_address, place_id)

我写的代码是这样的:
  prueba <- sapply(direccion1, function(x){
uno <- unlist(x[[1]])
})

pureba2 <- data.frame(prueba)

我收到以下错误: Error in (function (..., row.names = NULL,
check.rows = FALSE, check.names = TRUE, :
arguments imply differing number of rows: 40, 32, 37, 44, 36, 0, 41, 28, 39,
47, 43, 35, 48
在其他不起作用的代码中。

下载包含经纬度的数据的代码如下。
 # CRE FILES
library(easypackages)
my_packages <- c("ggmap","maps","mapdata","rlist","readr", "tidyverse",
"lubridate", "stringr", "rebus", "stringi", "purrr", "geosphere", "XML",
"RCurl", "xml2")
libraries(my_packages)

# Set link to website

link1 <-
("https://publicacionexterna.azurewebsites.net/publicaciones/prices")

# Get data from webpage

data_prices <- getURL(link1)

# Parse XML data

xmlfile <- xmlParse(data_prices)

# Get place nodes

places <- getNodeSet(xmlfile, "//place")

# Get values for each place

values <- lapply(places, function(x){

# Get current place id

p_id <- xmlAttrs(x)

# Get values for each gas type for current place

newrows <- lapply(xmlChildren(x), function(y){

# Get type and update time

attrs <- xmlAttrs(y)

# Get price value

price <- xmlValue(y)

names(price) <- "price"

# Return values

return(c(p_id, attrs, price)
)
})

# Combine rows to single list

newrows <- do.call(rbind, newrows)

# Return rows

return(newrows)


})

# Combine all values into a single dataframe

datosDePrecios <- as.data.frame(do.call(rbind, values), stringsAsFactors =
FALSE)

# Re-set row names for dataframe

row.names(datosDePrecios) <- c(1:nrow(datosDePrecios))

# Set link to website to the places file

link2 <-
("https://publicacionexterna.azurewebsites.net/publicaciones/places")


data_places <- read_xml(link2)

datos_id <- data_places %>%
xml_find_all("//place") %>%
xml_attr("place_id")

datos_name <- data_places %>%
xml_find_all("//name") %>%
xml_text("name")

datos_brand <- data_places %>%
xml_find_all("//brand") %>%
xml_text("brand")

datos_cre_id <- data_places %>%
xml_find_all("//cre_id") %>%
xml_text("cre_id")

datos_category <- data_places %>%
xml_find_all("//category") %>%
xml_text("category")

datos_adress_street <- data_places %>%
xml_find_all("//address_street") %>%
xml_text("adress_street")

datos_longitud <- data_places %>%
xml_find_all("//x") %>%
xml_text("x")

datos_latitud <- data_places %>%
xml_find_all("//y") %>%
xml_text("y")

datosDeLugares <- data.frame(datos_id, datos_name,
datos_brand, datos_cre_id,
datos_category, datos_adress_street,
datos_latitud, datos_longitud)

colnames(datosDeLugares) <- c("place_id", "name", "brand","cre_id",
"category", "adress_street", "Latitude", "Longitude")


rm(data_prices,places,values,xmlfile,data_places, datos_adress_street,
datos_brand, datos_category, datos_cre_id, datos_id, datos_name,
datos_longitud, datos_latitud)

rm(results, results2)

获取地址信息的代码如下。
datosDePrecios <- datosDePrecios %>%
data.frame(datosDePrecios) %>%
mutate(place_id = as.numeric(place_id))

datosDeLugares <- datosDeLugares %>%
data.frame(datosDeLugares) %>%
mutate(place_id = as.numeric(place_id))


baseGeneral <- inner_join(datosDeLugares, datosDePrecios, by = "place_id")


baseGeneral <- baseGeneral %>%
select(Latitude, Longitude, place_id) %>%
mutate(Latitude = as.numeric(as.character(Latitude))) %>%
mutate(Longitude = as.numeric(as.character(Longitude)))

baseGeneral <- baseGeneral[1:100,]

baseGeneral <- apply(baseGeneral,1 ,function(x) {
google_reverse_geocode(location = c(x["Latitude"],x["Longitude"]), key =
key, result_type = "street_address")
})

感谢您的帮助。 :)

最佳答案

您可以使用 [[ 从列表中提取信息符号,或 $
如果我以 ?google_reverse_geocode 中给出的例子为例得到结果

library(googleway)

res <- google_reverse_geocode(location = c(-37.81659, 144.9841),
result_type = c("street_address"),
location_type = "rooftop",
key = key)

纬度/经度信息在 res$results$geometry$location

格式化后的地址在 res$results$formatted_address
而 place_id 在 res$results$place_id
所以你可以创建你的 data.frame从这些元素
data.frame(
lat = res$results$geometry$location$lat,
lon = res$results$geometry$location$lng,
formatted_address = res$results$formatted_address,
place_id = res$results$place_id
)

如果您有多个结果列表,则过程类似,但您需要将其包装在 *apply 中。函数(或任何你喜欢的循环机制)
## a list of locations  
locations <- list(c(-37.81659, 144.9841), c(-37.81827, 144.9671))

## generating the reverse geocode for each location
lst_res <- lapply(locations, function(x){
google_reverse_geocode(location = x, key = key)
})

在这里, lst_res是地理编码函数的所有结果的列表,因此您可以对其进行迭代以提取相关部分
## now we can extract the information 
lst_df <- lapply(lst_res, function(x){
data.frame(
lat = x[['results']][['geometry']][['location']][['lat']],
lon = x[['results']][['geometry']][['location']][['lng']],
formatted_address = x[['results']][['formatted_address']],
place_id = x[['results']][['place_id']]
)
})

在这里, lst_df是一个 data.frames 列表。如果你想将它们加入一个单一的 data.frame 你可以
df <- do.call(rbind, lst_df)

## et voila!
head(df)
# lat lon
# 1 -37.81647 144.9841
# 2 -37.81659 144.9841
# 3 -37.81300 144.9850
# 4 -37.81363 144.9631
# 5 -37.81614 144.9805
# 6 -37.81005 144.9281
# formatted_address
# 1 Jolimont Station, 175 Wellington Parade, East Melbourne VIC 3002, Austalia
# 2 Jolimont Station, Wellington Cres, East Melbourne VIC 3002, Australia
# 3 East Melbourne VIC 3002, Australia
# 4 Melbourne VIC, Australia
# 5 East Melbourne VIC 3002, Australia
# 6 Melbourne, VIC, Australia
# place_id
# 1 ChIJSxAubOpC1moRqhRUnMoZV4M
# 2 ChIJIdtrbupC1moRMPT0CXZWBB0
# 3 ChIJz25SvMFC1moRAOiMIXVWBAU
# 4 ChIJ90260rVG1moRkM2MIXVWBAQ
# 5 ChIJG74w4Upd1moRsDQuRnhWBBw
# 6 ChIJv_FYgkNd1moRpxLuRXZURFs

关于r - 从 R 中的嵌套列表中提取数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45310166/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com