gpt4 book ai didi

python - 树状图按组着色

转载 作者:行者123 更新时间:2023-12-04 09:51:56 33 4
gpt4 key购买 nike

我创建了一个 heatmap基于 spearman 的相关矩阵,使用 seaborn clustermap 如下:我想绘制树状图。我希望树状图看起来像这样: dendrogram但在热图上

我创建了一个颜色字典,如下所示,但出现错误:

def assign_tree_colour(name,val_dict,coding_names_df):
ret = None
if val_dict.get(name, '') == 'Group 1':
ret = "(0,0.9,0.4)" #green
elif val_dict.get(name, '') == 'Group 2':
ret = "(0.6,0.1,0)" #red
elif val_dict.get(name, '') == 'Group 3':
ret = "(0.3,0.8,1)" #light blue
elif val_dict.get(name, '') == 'Group 4':
ret = "(0.4,0.1,1)" #purple
elif val_dict.get(name, '') == 'Group 5':
ret = "(1,0.9,0.1)" #yellow
elif val_dict.get(name, '') == 'Group 6':
ret = "(0,0,0)" #black
else:
ret = "(0,0,0)" #black
return ret

def fix_string(str):
return str.replace('"', '')

external_data3 = [list(z) for z in coding_names_df.values]
external_data3 = {fix_string(z[0]): z[3] for z in external_data3}

tree_label = list(df.index)
tree_label = [fix_string(x) for x in tree_label]
tree_labels = { j : tree_label[j] for j in range(0, len(tree_label) ) }

tree_colour = [assign_tree_colour(label, external_data3, coding_names_df) for label in tree_labels]
tree_colors = { i : tree_colour[i] for i in range(0, len(tree_colour) ) }


sns.set(color_codes=True)
sns.set(font_scale=1)
g = sns.clustermap(df, cmap="bwr",
vmin=-1, vmax=1,
yticklabels=1, xticklabels=1,
cbar_kws={"ticks":[-1,-0.5,0,0.5,1]},
figsize=(13,13),
row_colors=row_colors,
col_colors=col_colors,
method='average',
metric='correlation',
tree_kws=dict(colors=tree_colors))
g.ax_heatmap.set_xlabel('Genus')
g.ax_heatmap.set_ylabel('Genus')
for label in Group.unique():
g.ax_col_dendrogram.bar(0, 0, color=lut[label],
label=label, linewidth=0)
g.ax_col_dendrogram.legend(loc=9, ncol=7, bbox_to_anchor=(0.26, 0., 0.5, 1.5))
ax=g.ax_heatmap



File "<ipython-input-64-4bc6be89afe3>", line 11, in <module>
tree_kws=dict(colors=tree_colors))



File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\seaborn\matrix.py", line 1391, in clustermap
tree_kws=tree_kws, **kwargs)

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\seaborn\matrix.py", line 1208, in plot
tree_kws=tree_kws)

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\seaborn\matrix.py", line 1054, in plot_dendrograms
tree_kws=tree_kws

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\seaborn\matrix.py", line 776, in dendrogram
return plotter.plot(ax=ax, tree_kws=tree_kws)

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\seaborn\matrix.py", line 692, in plot
**tree_kws)

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\matplotlib\collections.py", line 1316, in __init__
colors = mcolors.to_rgba_array(colors)

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\matplotlib\colors.py", line 294, in to_rgba_array
result[i] = to_rgba(cc, alpha)

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\matplotlib\colors.py", line 177, in to_rgba
rgba = _to_rgba_no_colorcycle(c, alpha)

File "C:\Users\rotemb\AppData\Local\Continuum\anaconda3\lib\site-packages\matplotlib\colors.py", line 240, in _to_rgba_no_colorcycle
raise ValueError("Invalid RGBA argument: {!r}".format(orig_c))

ValueError: Invalid RGBA argument: 0

如有任何帮助,我们将不胜感激!谢谢!

最佳答案

根据 sns.clustermap文档中,树状图着色可以通过 tree_kws(接受字典)及其 colors 属性来设置,该属性需要一个 RGB 元组列表,例如 (0.5, 0.5, 1)colors 似乎也只支持 RGB 元组格式数据。

您是否注意到 clustermap 支持树状图和相关矩阵之间分层颜色条的嵌套列表或数据框?如果树状图过于拥挤,它们可能会有用。

希望对您有所帮助!

编辑

RGB 列表是LineCollection 中线条颜色的序列 — 它在绘制两个 树状图中的每条线时使用该序列。 (顺序好像是从列树状图最右边的分支开始的顺序)为了将某个标签与数据点关联起来,需要弄清楚数据点在树状图中的绘制顺序。

编辑二

这是一个根据 sns.clustermap 给树着色的最小示例示例:

import matplotlib.pyplot as plt
import seaborn as sns; sns.set(color_codes=True)
import pandas as pd


iris = sns.load_dataset("iris")
species = iris.pop("species")
g = sns.clustermap(iris)
lut = dict(zip(species.unique(), "rbg"))
row_colors = species.map(lut)
# For demonstrating the hierarchical sidebar coloring
df_colors = pd.DataFrame(data={'r': row_colors[row_colors == 'r'], 'g': row_colors[row_colors == 'g'], 'b': row_colors[row_colors == 'b']})
# Simple class RGBA colormap
colmap = {'setosa': (1, 0, 0, 0.7), 'virginica': (0, 1, 0, 0.7), 'versicolor': (0, 0, 1, 0.7)}
g = sns.clustermap(iris, row_colors=df_colors, tree_kws={'colors':[colmap[s] for s in species]})
plt.savefig('clustermap.png')

clustermap.png如您所见,树的绘制线的顺序从图像的右上角开始,因此与 clustermap 中可视化的数据点的顺序无关。另一方面,颜色条(由 {row,col}_colors 属性控制)可用于该目的。

关于python - 树状图按组着色,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62001483/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com