gpt4 book ai didi

python - 将大型位置数据帧的东距和北距快速转换为纬度和经度

转载 作者:行者123 更新时间:2023-12-04 09:50:38 24 4
gpt4 key购买 nike

我正在使用 Pandas 和 PyProj 将东向和北向转换为经度和纬度,然后像这样将拆分输出保存为 2 列....

v84 = Proj(proj="latlong",towgs84="0,0,0",ellps="WGS84")
v36 = Proj(proj="latlong", k=0.9996012717, ellps="airy",
towgs84="446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894")
vgrid = Proj(init="world:bng")


def convertLL(row):

easting = row['easting']
northing = row['northing']

vlon36, vlat36 = vgrid(easting, northing, inverse=True)

converted = transform(v36, v84, vlon36, vlat36)

row['longitude'] = converted[0]
row['latitude'] = converted[1]

return row


values = pd.read_csv("values.csv")
values = values.apply(convertLL, axis=1)

这是可行的,但速度非常慢,并且在较大的数据集上会超时。为了改进,我试图将其转换为使用 lamba 函数,希望能加快速度。到目前为止我有这个......

def convertLL(easting, northing):

vlon36, vlat36 = vgrid(easting, northing, inverse=True)

converted = transform(v36, v84, vlon36, vlat36)

row = row['longitude'] = converted[0]

return row


values ['longitude'] = values.apply(lambda row: convertLL(row['easting'], row['northing']), axis=1)

这个转换后的版本正在运行,比我的旧版本更快,并且不会在更大的数据集上超时,但这只适用于经度,有没有办法让它也做纬度?

此外,这是向量化的吗?我可以再加快速度吗?

编辑

数据样本...

name | northing | easting | latitude | longitude
------------------------------------------------
tl1 | 378778 | 366746 | |
tl2 | 384732 | 364758 | |

最佳答案

因为主题问题,我认为我们不能只见树木不见森林。如果我们看the docs for transform你会看到:

  • xx (scalar or array (numpy or python)) – Input x coordinate(s).
  • yy (scalar or array (numpy or python)) – Input y coordinate(s).

很好; numpy 数组正是我们所需要的。 pd.DataFrame 可以被认为是数组的字典,所以我们只需要隔离那些列并将它们传递给函数。有一个小问题 - DataFrame 的列将是一个 Seriestransform 将拒绝它,所以我们只需要使用 属性。这个迷你示例直接等同于您的初始方法:

def vectorized_convert(df):
vlon36, vlat36 = vgrid(df['easting'].values,
df['northing'].values,
inverse=True)
converted = transform(v36, v84, vlon36, vlat36)
df['longitude'] = converted[0]
df['latitude'] = converted[1]
return df

df = pd.DataFrame({'northing': [378778, 384732],
'easting': [366746, 364758]})

print(vectorized_convert(df))

我们完成了。除此之外,我们可以查看 100 行的计时(当前方法对于我通常的 100,000 行计时示例来说是爆炸性的):

def current_way(df):
df = df.apply(convertLL, axis=1)
return df


def vectorized_convert(df):
vlon36, vlat36 = vgrid(df['easting'].values,
df['northing'].values,
inverse=True)

converted = transform(v36, v84, vlon36, vlat36)
df['longitude'] = converted[0]
df['latitude'] = converted[1]
return df


df = pd.DataFrame({'northing': [378778, 384732] * 50,
'easting': [366746, 364758] * 50})

给予:

%timeit current_way(df)
289 ms ± 15.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit vectorized_convert(df)
2.95 ms ± 59.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

关于python - 将大型位置数据帧的东距和北距快速转换为纬度和经度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62019398/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com