- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 Apache Spark 的新手,我正在尝试将一段简单的 Scala 代码部署到 Spark。
注:我正在尝试连接到一个现有的正在运行的集群,我通过我的 java 参数将其配置为:spark.master=spark://MyHostName:7077
环境
import org.apache.spark.{SparkConf, SparkContext}
object HelloSpark {
def main(args: Array[String]) {
val logFile = "/README.md"
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
println("%s done!".format(numAs))
}
}
name := "data-streamer210"
version := "1.0"
scalaVersion := "2.10.4"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-core_2.10" % "1.5.1",
"org.apache.spark" % "spark-streaming_2.10" % "1.5.1",
"org.apache.spark" % "spark-mllib_2.10" % "1.5.1",
"org.apache.spark" % "spark-bagel_2.10" % "1.5.1",
"org.apache.spark" % "spark-streaming-twitter_2.10" % "1.5.1"
)
15/10/19 19:40:09 INFO SparkContext: Starting job: count at HelloSpark.scala:14
15/10/19 19:40:09 INFO DAGScheduler: Got job 0 (count at HelloSpark.scala:14) with 2 output partitions
15/10/19 19:40:09 INFO DAGScheduler: Final stage: ResultStage 0(count at HelloSpark.scala:14)
15/10/19 19:40:09 INFO DAGScheduler: Parents of final stage: List()
15/10/19 19:40:09 INFO DAGScheduler: Missing parents: List()
15/10/19 19:40:09 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[2] at filter at HelloSpark.scala:14), which has no missing parents
15/10/19 19:40:09 INFO MemoryStore: ensureFreeSpace(3192) called with curMem=120313, maxMem=2061647216
15/10/19 19:40:09 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 3.1 KB, free 1966.0 MB)
15/10/19 19:40:09 INFO MemoryStore: ensureFreeSpace(1892) called with curMem=123505, maxMem=2061647216
15/10/19 19:40:09 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 1892.0 B, free 1966.0 MB)
15/10/19 19:40:09 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 127.0.0.1:50941 (size: 1892.0 B, free: 1966.1 MB)
15/10/19 19:40:09 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:861
15/10/19 19:40:09 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[2] at filter at HelloSpark.scala:14)
15/10/19 19:40:09 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
15/10/19 19:40:10 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@127.0.0.1:50951/user/Executor#-147774947]) with ID 0
15/10/19 19:40:10 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:10 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:10 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@127.0.0.1:50952/user/Executor#1450479604]) with ID 2
15/10/19 19:40:10 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@127.0.0.1:50957/user/Executor#1447408721]) with ID 1
15/10/19 19:40:10 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@127.0.0.1:50955/user/Executor#1397136754]) with ID 3
15/10/19 19:40:10 INFO BlockManagerMasterEndpoint: Registering block manager 127.0.0.1:50963 with 530.0 MB RAM, BlockManagerId(0, 127.0.0.1, 50963)
15/10/19 19:40:10 INFO BlockManagerMasterEndpoint: Registering block manager 127.0.0.1:50964 with 530.0 MB RAM, BlockManagerId(2, 127.0.0.1, 50964)
15/10/19 19:40:10 INFO BlockManagerMasterEndpoint: Registering block manager 127.0.0.1:50965 with 530.0 MB RAM, BlockManagerId(1, 127.0.0.1, 50965)
15/10/19 19:40:10 INFO BlockManagerMasterEndpoint: Registering block manager 127.0.0.1:50966 with 530.0 MB RAM, BlockManagerId(3, 127.0.0.1, 50966)
15/10/19 19:40:11 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 127.0.0.1:50963 (size: 1892.0 B, free: 530.0 MB)
15/10/19 19:40:11 WARN TaskSetManager: Lost task 1.0 in stage 0.0 (TID 1, 127.0.0.1): java.lang.ClassNotFoundException: HelloSpark$$anonfun$1
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:67)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1613)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1518)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1774)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:72)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:98)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/10/19 19:40:11 INFO TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0) on executor 127.0.0.1: java.lang.ClassNotFoundException (HelloSpark$$anonfun$1) [duplicate 1]
15/10/19 19:40:11 INFO TaskSetManager: Starting task 0.1 in stage 0.0 (TID 2, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:11 INFO TaskSetManager: Starting task 1.1 in stage 0.0 (TID 3, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:11 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 127.0.0.1:50966 (size: 1892.0 B, free: 530.0 MB)
15/10/19 19:40:11 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on 127.0.0.1:50964 (size: 1892.0 B, free: 530.0 MB)
15/10/19 19:40:11 INFO TaskSetManager: Lost task 1.1 in stage 0.0 (TID 3) on executor 127.0.0.1: java.lang.ClassNotFoundException (HelloSpark$$anonfun$1) [duplicate 2]
15/10/19 19:40:11 INFO TaskSetManager: Starting task 1.2 in stage 0.0 (TID 4, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:11 INFO TaskSetManager: Lost task 1.2 in stage 0.0 (TID 4) on executor 127.0.0.1: java.lang.ClassNotFoundException (HelloSpark$$anonfun$1) [duplicate 3]
15/10/19 19:40:11 INFO TaskSetManager: Lost task 0.1 in stage 0.0 (TID 2) on executor 127.0.0.1: java.lang.ClassNotFoundException (HelloSpark$$anonfun$1) [duplicate 4]
15/10/19 19:40:11 INFO TaskSetManager: Starting task 0.2 in stage 0.0 (TID 5, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:11 INFO TaskSetManager: Starting task 1.3 in stage 0.0 (TID 6, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:11 INFO TaskSetManager: Lost task 0.2 in stage 0.0 (TID 5) on executor 127.0.0.1: java.lang.ClassNotFoundException (HelloSpark$$anonfun$1) [duplicate 5]
15/10/19 19:40:11 INFO TaskSetManager: Starting task 0.3 in stage 0.0 (TID 7, 127.0.0.1, PROCESS_LOCAL, 2160 bytes)
15/10/19 19:40:11 INFO TaskSetManager: Lost task 0.3 in stage 0.0 (TID 7) on executor 127.0.0.1: java.lang.ClassNotFoundException (HelloSpark$$anonfun$1) [duplicate 6]
15/10/19 19:40:11 ERROR TaskSetManager: Task 0 in stage 0.0 failed 4 times; aborting job
15/10/19 19:40:11 INFO TaskSchedulerImpl: Cancelling stage 0
15/10/19 19:40:11 INFO TaskSchedulerImpl: Stage 0 was cancelled
15/10/19 19:40:11 INFO DAGScheduler: ResultStage 0 (count at HelloSpark.scala:14) failed in 2.613 s
15/10/19 19:40:11 INFO DAGScheduler: Job 0 failed: count at HelloSpark.scala:14, took 2.716305 s
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 7, 127.0.0.1): java.lang.ClassNotFoundException: HelloSpark$$anonfun$1
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:67)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1613)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1518)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1774)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:72)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:98)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1822)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1835)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1848)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1919)
at org.apache.spark.rdd.RDD.count(RDD.scala:1121)
at HelloSpark$.main(HelloSpark.scala:14)
at HelloSpark.main(HelloSpark.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
Caused by: java.lang.ClassNotFoundException: HelloSpark$$anonfun$1
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.serializer.JavaDeserializationStream$$anon$1.resolveClass(JavaSerializer.scala:67)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1613)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1518)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1774)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:72)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:98)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/10/19 19:40:11 INFO SparkContext: Invoking stop() from shutdown hook
15/10/19 19:40:11 WARN TaskSetManager: Lost task 1.3 in stage 0.0 (TID 6, 127.0.0.1): org.apache.spark.TaskKilledException
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:204)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/10/19 19:40:11 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
15/10/19 19:40:11 INFO SparkUI: Stopped Spark web UI at http://127.0.0.1:4040
15/10/19 19:40:11 INFO DAGScheduler: Stopping DAGScheduler
15/10/19 19:40:11 INFO SparkDeploySchedulerBackend: Shutting down all executors
15/10/19 19:40:11 INFO SparkDeploySchedulerBackend: Asking each executor to shut down
15/10/19 19:40:11 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
15/10/19 19:40:11 INFO MemoryStore: MemoryStore cleared
15/10/19 19:40:11 INFO BlockManager: BlockManager stopped
15/10/19 19:40:11 INFO BlockManagerMaster: BlockManagerMaster stopped
15/10/19 19:40:11 INFO SparkContext: Successfully stopped SparkContext
15/10/19 19:40:11 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
15/10/19 19:40:11 INFO ShutdownHookManager: Shutdown hook called
15/10/19 19:40:11 INFO ShutdownHookManager: Deleting directory /private/var/folders/q9/m_d81ms107n09tj8k5wbzfb40000gp/T/spark-53ce9474-5488-4d50-bfb6-c58ddeed7640
Process finished with exit code 1
最佳答案
当您从 IntelliJ 运行 Spark 时,您可以连接到“本地” Spark JVM 或远程集群。
如果您将 master 设置为本地(例如, setMaster("local[*]")
),那么您在本地范围/项目中拥有的任何代码都将可用于您刚刚创建的这个临时的本地(单个 JVM)集群。一切都在本地运行,并会在您的测试结束时退出(如果您正在运行单元测试),或者如果您在 IntelliJ 中将其作为应用程序运行,则在您退出应用程序时退出。
但是,如果您将 master 设置为指向远程集群(比如 setMaster("spark://localhost:7077")
),您需要确保您的集群可以访问您的新代码(在您的情况下,它需要访问您传递给 filter
的闭包)。
当我想在正在运行的 Spark 集群上执行一段新代码时,我通常通过将我的应用程序打包在 Uber Jar 中(请参阅 sbt-assembly )然后将其作为参数传递给 spark-submit(点击链接查看更多详细信息) )。
关于scala - 将 Scala 代码部署到 Spark 时 ClassNotFoundException anonfun,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33222045/
我有一些 Scala 代码,它用两个不同版本的类型参数化函数做了一些漂亮的事情。我已经从我的应用程序中简化了很多,但最后我的代码充满了形式 w(f[Int],f[Double]) 的调用。哪里w()是
如果我在同一目录中有两个单独的未编译的 scala 文件: // hello.scala object hello { def world() = println("hello world") }
val schema = df.schema val x = df.flatMap(r => (0 until schema.length).map { idx => ((idx, r.g
环境: Play 2.3.0/Scala 2.11.1/IntelliJ 13.1 我使用 Typesafe Activator 1.2.1 用 Scala 2.11.1 创建一个新项目。项目创建好后
我只是想知道如何使用我自己的类扩展 Scala 控制台和“脚本”运行程序,以便我可以通过使用实际的 Scala 语言与其通信来实际使用我的代码?我应将 jar 放在哪里,以便无需临时配置即可从每个 S
我已经根据 README.md 文件安装了 ensime,但是,我在低级 ensime-server 缓冲区中出现以下错误: 信息: fatal error :scala.tools.nsc.Miss
我正在阅读《Scala 编程》一书。在书中,它说“一个函数文字被编译成一个类,当在运行时实例化时它是一个函数值”。并且它提到“函数值是对象,因此您可以根据需要将它们存储在变量中”。 所以我尝试检查函数
我有 hello world scala native 应用程序,想对此应用程序运行小型 scala 测试我使用通常的测试命令,但它抛出异常: NativeMain.scala object Nati
有few resources在网络上,在编写与代码模式匹配的 Scala 编译器插件方面很有指导意义,但这些对生成代码(构建符号树)没有帮助。我应该从哪里开始弄清楚如何做到这一点? (如果有比手动构建
我是 Scala 的新手。但是,我用 创建了一个中等大小的程序。斯卡拉 2.9.0 .现在我想使用一个仅适用于 的开源库斯卡拉 2.7.7 . 是吗可能 在我的 Scala 2.9.0 程序中使用这个
有没有办法在 Scala 2.11 中使用 scala-pickling? 我在 sonatype 存储库中尝试了唯一的 scala-pickling_2.11 工件,但它似乎不起作用。我收到消息:
这与命令行编译器选项无关。如何以编程方式获取代码内的 Scala 版本? 或者,Eclipse Scala 插件 v2 在哪里存储 scalac 的路径? 最佳答案 这无需访问 scala-compi
我正在阅读《Scala 编程》一书,并在第 6 章中的类 Rational 实现中遇到了一些问题。 这是我的 Rational 类的初始版本(基于本书) class Rational(numerato
我是 Scala 新手,我正在尝试开发一个使用自定义库的小项目。我在库内创建了一个mysql连接池。这是我的库的build.sbt organization := "com.learn" name :
我正在尝试运行一些 Scala 代码,只是暂时打印出“Hello”,但我希望在 SBT 项目中编译 Scala 代码之前运行 Scala 代码。我发现在 build.sbt 中有以下工作。 compi
Here链接到 maven Scala 插件使用。但没有提到它使用的究竟是什么 Scala 版本。我创建了具有以下配置的 Maven Scala 项目: org.scala-tools
我对 Scala 还很陌生,请多多包涵。我有一堆包裹在一个大数组中的 future 。 future 已经完成了查看几 TB 数据的辛勤工作,在我的应用程序结束时,我想总结上述 future 的所有结
我有一个 scala 宏,它依赖于通过包含其位置的静态字符串指定的任意 xml 文件。 def myMacro(path: String) = macro myMacroImpl def myMacr
这是我的功能: def sumOfSquaresOfOdd(in: Seq[Int]): Int = { in.filter(_%2==1).map(_*_).reduce(_+_) } 为什么我
这个问题在这里已经有了答案: Calculating the difference between two Java date instances (45 个答案) 关闭 5 年前。 所以我有一个这
我是一名优秀的程序员,十分优秀!