gpt4 book ai didi

python - 使用 fit_generator 不匹配的形状时出错(Keras)

转载 作者:行者123 更新时间:2023-12-04 09:42:52 30 4
gpt4 key购买 nike

我正在尝试构建一个简单的分类 CNN,它将使用以下代码将一组 1233 张图像分为 4 个类别:

unclassified_datagen = keras.preprocessing.image.ImageDataGenerator(
rescale=1. / 255,
horizontal_flip=True
)
unclassified_generator = train_datagen.flow_from_directory(
'data/unclassified',
target_size=(120, 120),
batch_size=1233,
class_mode='input',
shuffle=False,
)

model_unclassified = keras.Sequential()
model_unclassified.add(layers.Conv2D(1233, (3, 3), input_shape=(120, 120, 3), padding="SAME"))
model_unclassified.add(layers.Dense(64, activation='relu'))
model_unclassified.add(layers.Dense(4, activation='sigmoid'))

model_unclassified.compile(loss='sparse_categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model_unclassified.fit_generator(unclassified_generator, epochs=1)


但我收到以下错误: ValueError: Error when checking target: expected dense_2 to have shape (120, 120, 1) but got array with shape (120, 120, 3)
我究竟做错了什么?

最佳答案

您应该添加 Flatten层,因为 Conv2D为每个样本返回 3D 数组:

model_unclassified = keras.Sequential()
model_unclassified.add(layers.Conv2D(1233, (3, 3), input_shape=(120, 120, 3), padding="SAME"))
model_unclassified.add(layers.Flatten())
model_unclassified.add(layers.Dense(64, activation='relu'))
model_unclassified.add(layers.Dense(4, activation='sigmoid'))

关于python - 使用 fit_generator 不匹配的形状时出错(Keras),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62253966/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com