gpt4 book ai didi

Python最小二乘拟合数据

转载 作者:行者123 更新时间:2023-12-04 09:40:52 24 4
gpt4 key购买 nike

我目前正在为我的大学撰写一篇科学论文,并获得了一些我想做回归的数据。数据如下所示:

enter image description here

P(红色)和 w(蓝色)似乎都遵循 sin 函数。

我适合数据的函数如下所示:

def test_P(x, P0, P1, P2, P3):
return P0 * np.sin(x * P1 + P2) + P3


def test_w(x, w0, w1, w2, w3):
return w0 * np.sin(x * w1 + w2) + w3

给定时间数组 time , wp ,我做了以下事情:
paramp, paramp_covariance = optimize.curve_fit(test_P, time, P, maxfev=20000)
paramw, paramw_covariance = optimize.curve_fit(test_w, time, w, maxfev=20000)

结果是:

enter image description here

可以看到偏转 w非常适合: R^2 w = 0.9997 .虽然原力 P根本不适合。

我试图减少 P 的参数数量所以不要沿着 t 移动或 w本身是可能的:
def test_P(x, P0, P1):
return P0 * np.sin(x * P1)

这实际上变得更合适:

enter image description here

尽管您可以看到它仍然不是真正的完美契合 test_P(x, P0, P1, P2, P3)理论上可以。

我不确定数据是如何拟合的,但由于它的非线性,我假设它只是由于局部最小值而想要收敛的解决方案。如果我能给 P0, P1, P2, P3 一些初始值,我可以解决这个问题。

如果有人可以帮助我,我会很高兴。

附录
def test_P(x, P0, P1):
return P0 * np.sin(x * P1)


def test_w(x, w0, w1, w2, w3):
return w0 * np.sin(x * w1 + w2) + w3



# time, j, tau, w, P = compute()



time = np.fromstring("0.00000000e+00 2.80568971e-06 5.61137943e-06 8.41706914e-06 "
"1.12227589e-05 1.40284486e-05 1.68341383e-05 1.96398280e-05 "
"2.24455177e-05 2.52512074e-05 2.80568971e-05 3.08625868e-05 "
"3.36682766e-05 3.64739663e-05 3.92796560e-05 4.20853457e-05 "
"4.48910354e-05 4.76967251e-05 5.05024148e-05 5.33081045e-05 "
"5.61137943e-05 5.89194840e-05 6.17251737e-05 6.45308634e-05 "
"6.73365531e-05 7.01422428e-05", sep=' ')

j = 26


w = np.fromstring("0.00000000e+00 5.38570360e-06 6.91685941e-06 1.85449532e-05 "
"3.74039599e-05 6.40181749e-05 9.84056769e-05 1.40161109e-04 "
"1.88501856e-04 2.42324540e-04 3.00295181e-04 3.60927587e-04 "
"4.22660154e-04 4.83951704e-04 5.43352668e-04 5.99555945e-04 "
"6.51467980e-04 6.98222382e-04 7.39199688e-04 7.74056091e-04 "
"8.02681759e-04 8.25178050e-04 8.41902951e-04 8.53367116e-04 "
"8.60248942e-04 8.63521680e-04", sep=' ')

P = np.fromstring("0. 7.28709546 20.71085451 37.0721402 55.07986215 "
"73.54180405 91.39806157 107.70934459 121.67898126 132.68066578 "
"140.27838808 144.23755455 144.52399949 141.28824859 134.84108157 "
"125.62238298 114.1621182 101.04496874 86.87495208 72.24302972 "
"57.7072657 43.77853371 30.9118352 19.52425605 10.03199405 "
"2.97389719 ", sep=' ')



paramp, paramp_covariance = optimize.curve_fit(test_P, time, P, maxfev=100000)
paramw, paramw_covariance = optimize.curve_fit(test_w, time, w, maxfev=100000)
P_fit = np.zeros(j)
w_fit = np.zeros(j)
for i in range(0, j):
P_fit[i] = test_P(time[i], paramp[0], paramp[1])
w_fit[i] = test_w(time[i], paramw[0], paramw[1],paramw[2], paramw[3])
print('R^2 P: ', r2_score(P, P_fit))
print('R^2 w: ', r2_score(w, w_fit))

# ------------------------------------------------------------------------------
# P L O T T E N D E R E R G E B N I S S E

fig, ax1 = plt.subplots()
ax1.set_xlabel('time[s]')
ax1.set_ylabel('Power [kg]')
l1, = ax1.plot(time, P, 'r.', label='P')
l2, = ax1.plot(time, test_P(time, paramp[0], paramp[1]), 'r-', label='P_fit')
ax1.tick_params(axis='y', colors='r')

ax2 = ax1.twinx()
ax2.set_ylabel('w,z [cm]')
l3, = ax2.plot(time, w, 'b.', label='w')
l4, = ax2.plot(time, test_w(time, paramw[0], paramw[1],paramw[2], paramw[3]), 'b-', label='w_fit')
# ax2.plot(time,z,color='tab:cyan',label='z')
ax2.tick_params(axis='y', colors='b')

lines = [l1, l2, l3, l4]
plt.legend(lines, ["P", "P_fit", "w", "w_fit"])
fig.tight_layout()
plt.show()

最佳答案

简答 : 因为sine函数的相位应该绑定(bind)到区间[0,2*np.pi] .如果你不考虑参数,你显然没有边界问题。您可以指定 boundsscipy.optimize :

paramp, paramp_covariance = optimize.curve_fit(test_P, time, P, maxfev=100000, bounds = ([-np.inf,-np.inf,0,-np.inf],[np.inf,np.inf,2*np.pi,np.inf]))

长答案 :

我无法复制您的 w合适,如果我使用您的代码,我会得到以下图像:
enter image description here

所以这个问题至少对于 optimize 来说是一致的。职能。如果你那么 限制正弦的相位 ,你得到和以前一样的结果。

我不知道为什么会修复它,我只是认为优化函数在内部搜索 P2 上的梯度在内部并没有找到它,搜索直到它达到一些内部“最大步数”参数,所以最好的优化是它的 init。

有人知道这背后的数学原理吗?

完整代码如下。它演示了解决方案,以及 W形成一条线。
import numpy as np 
import matplotlib.pyplot as plt
from scipy import optimize
def test_P(x, P0, P1, P2, P3):
return P0 * np.sin(x * P1 + P2) + P3


def test_w(x, w0, w1, w2, w3):
return w0 * np.sin(x * w1 + w2) + w3



# time, j, tau, w, P = compute()



time = np.fromstring("0.00000000e+00 2.80568971e-06 5.61137943e-06 8.41706914e-06 "
"1.12227589e-05 1.40284486e-05 1.68341383e-05 1.96398280e-05 "
"2.24455177e-05 2.52512074e-05 2.80568971e-05 3.08625868e-05 "
"3.36682766e-05 3.64739663e-05 3.92796560e-05 4.20853457e-05 "
"4.48910354e-05 4.76967251e-05 5.05024148e-05 5.33081045e-05 "
"5.61137943e-05 5.89194840e-05 6.17251737e-05 6.45308634e-05 "
"6.73365531e-05 7.01422428e-05", sep=' ')

j = 26


w = np.fromstring("0.00000000e+00 5.38570360e-06 6.91685941e-06 1.85449532e-05 "
"3.74039599e-05 6.40181749e-05 9.84056769e-05 1.40161109e-04 "
"1.88501856e-04 2.42324540e-04 3.00295181e-04 3.60927587e-04 "
"4.22660154e-04 4.83951704e-04 5.43352668e-04 5.99555945e-04 "
"6.51467980e-04 6.98222382e-04 7.39199688e-04 7.74056091e-04 "
"8.02681759e-04 8.25178050e-04 8.41902951e-04 8.53367116e-04 "
"8.60248942e-04 8.63521680e-04", sep=' ')

P = np.fromstring("0. 7.28709546 20.71085451 37.0721402 55.07986215 "
"73.54180405 91.39806157 107.70934459 121.67898126 132.68066578 "
"140.27838808 144.23755455 144.52399949 141.28824859 134.84108157 "
"125.62238298 114.1621182 101.04496874 86.87495208 72.24302972 "
"57.7072657 43.77853371 30.9118352 19.52425605 10.03199405 "
"2.97389719 ", sep=' ')

print(P)

paramp, paramp_covariance = optimize.curve_fit(test_P, time, P, maxfev=100000, bounds = ([-np.inf,-np.inf,0,-np.inf],[np.inf,np.inf,2*np.pi,np.inf]))
print(paramp)

paramw, paramw_covariance = optimize.curve_fit(test_w, time, w, maxfev=100000)
print(paramw)
P_fit = np.zeros(j)

w_fit = np.zeros(j)
for i in range(0, j):
P_fit[i] = test_P(time[i], paramp[0], paramp[1], paramp[2], paramp[3])
w_fit[i] = test_w(time[i], paramw[0], paramw[1],paramw[2], paramw[3])

# ------------------------------------------------------------------------------
# P L O T T E N D E R E R G E B N I S S E

fig, ax1 = plt.subplots()
ax1.set_xlabel('time[s]')
ax1.set_ylabel('Power [kg]')
l1, = ax1.plot(time, P, 'r.', label='P')
l2, = ax1.plot(time, test_P(time, paramp[0], paramp[1], paramp[2], paramp[3]), 'r-', label='P_fit')
ax1.tick_params(axis='y', colors='r')

ax2 = ax1.twinx()
ax2.set_ylabel('w,z [cm]')
l3, = ax2.plot(time, w, 'b.', label='w')
l4, = ax2.plot(time, test_w(time, paramw[0], paramw[1],paramw[2], paramw[3]), 'b-', label='w_fit')
# ax2.plot(time,z,color='tab:cyan',label='z')
ax2.tick_params(axis='y', colors='b')

lines = [l1, l2, l3, l4]
plt.legend(lines, ["P", "P_fit", "w", "w_fit"])
fig.tight_layout()
plt.show()

产量:
enter image description here

关于Python最小二乘拟合数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62340708/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com