gpt4 book ai didi

python - 如何在极坐标 matplotlib 图上绘制带有文本(即标签)的水平线? (Python)

转载 作者:行者123 更新时间:2023-12-04 09:35:58 31 4
gpt4 key购买 nike

我试图在我的极坐标图中标记节点。有 3 个“轴”被拆分,我已经弄清楚如何使用象限来选择要标记的节点。但是,我不知道如何将这些对齐到图的边缘(即 axis_maximum )。我花了几个小时试图弄清楚这一点。我最好的选择是填充 .在左边或右边,但这是一个固定的数字,当点数太多时会变得困惑。此外,当有很多点时,这种方法超出了情节的“圆形”性质。 I did some trigonometry找出所有内容的长度,但这很难使用文本单元(例如 .)来实现。 .
如果有人可以提供帮助,将不胜感激。我展示了下面的情节,然后用红色添加了我想要实现的内容。 label模拟图中对应于name_node在 for 循环中。理想情况下,我想避免使用像 . 这样的字符。并且宁愿使用实际的 matplotlib Line对象,以便我可以指定 linestyle喜欢 :- .
总之,我想做以下事情:

  • 添加从我的“轴”延伸到绘图外边缘的水平线(右侧或左侧取决于象限)
  • 在 (1) 行的末尾,我想添加 name_node文本。

  • 编辑:
  • 我添加了覆盖笛卡尔轴的尝试,然后在其上绘制线条。没有成功。
  • import numpy as np
    from numpy import array # I don't like this but it's for loading in the pd.DataFrame
    import pandas as pd
    import matplotlib.pyplot as plt
    df = pd.DataFrame({'node_positions_normalized': {'iris_100': 200.0, 'iris_101': 600.0, 'iris_102': 1000.0, 'iris_0': 200.0, 'iris_1': 600.0, 'iris_2': 1000.0, 'iris_50': 200.0, 'iris_51': 600.0, 'iris_52': 1000.0}, 'theta': {'iris_100': array([5.42070629, 6.09846678]), 'iris_101': array([5.42070629, 6.09846678]), 'iris_102': array([5.42070629, 6.09846678]), 'iris_0': array([1.23191608, 1.90967657]), 'iris_1': array([1.23191608, 1.90967657]), 'iris_2': array([1.23191608, 1.90967657]), 'iris_50': array([3.32631118, 4.00407168]), 'iris_51': array([3.32631118, 4.00407168]), 'iris_52': array([3.32631118, 4.00407168])}})
    axis_maximum = df["node_positions_normalized"].max()
    thetas = np.unique(np.stack(df["theta"].values).ravel())


    def pol2cart(rho, phi):
    x = rho * np.cos(phi)
    y = rho * np.sin(phi)
    return(x, y)

    def _get_quadrant_info(theta_representative):
    # 0/360
    if theta_representative == np.deg2rad(0):
    quadrant = 0
    # 90
    if theta_representative == np.deg2rad(90):
    quadrant = 90
    # 180
    if theta_representative == np.deg2rad(180):
    quadrant = 180
    # 270
    if theta_representative == np.deg2rad(270):
    quadrant = 270

    # Quadrant 1
    if np.deg2rad(0) < theta_representative < np.deg2rad(90):
    quadrant = 1
    # Quadrant 2
    if np.deg2rad(90) < theta_representative < np.deg2rad(180):
    quadrant = 2
    # Quadrant 3
    if np.deg2rad(180) < theta_representative < np.deg2rad(270):
    quadrant = 3
    # Quadrant 4
    if np.deg2rad(270) < theta_representative < np.deg2rad(360):
    quadrant = 4
    return quadrant


    with plt.style.context("seaborn-white"):
    fig = plt.figure(figsize=(8,8))
    ax = plt.subplot(111, polar=True)
    ax_cartesian = fig.add_axes(ax.get_position(), frameon=False, polar=False)
    ax_cartesian.set_xlim(-axis_maximum, axis_maximum)
    ax_cartesian.set_ylim(-axis_maximum, axis_maximum)

    # Draw axes
    for theta in thetas:
    ax.plot([theta,theta], [0,axis_maximum], color="black")

    # Draw nodes
    for name_node, data in df.iterrows():
    r = data["node_positions_normalized"]
    for theta in data["theta"]:
    ax.scatter(theta, r, color="teal", s=150, edgecolor="black", linewidth=1, alpha=0.618)
    # Draw node labels
    quadrant = _get_quadrant_info(np.mean(data["theta"]))

    # pad on the right and push label to left
    if quadrant in {1,4}:
    theta_anchor_padding = min(data["theta"])
    # pad on left and push label to the right
    if quadrant in {2,3}:
    theta_anchor_padding = max(data["theta"])

    # Plot
    ax.text(
    s=name_node,
    x=theta_anchor_padding,
    y=r,
    horizontalalignment="center",
    verticalalignment="center",
    )

    ax.set_rlim((0,axis_maximum))

    # Convert polar to cartesian and plot on cartesian overlay?
    xf, yf = pol2cart(theta_anchor_padding, r) #fig.transFigure.inverted().transform(ax.transData.transform((theta_anchor_padding, r)))
    ax_cartesian.plot([xf, axis_maximum], [yf, yf])
    enter image description here

    最佳答案

    您可以使用 annotate 而不是 text ,这允许您独立于点坐标指定文本坐标和文本坐标系。我们将文本放置在图形坐标中( 01 ,详见 here )。在 r 之后获得从数据到图形坐标的转换很重要设置了限制。

    with plt.style.context("seaborn-white"):
    fig = plt.figure(figsize=(8,8))
    ax = plt.subplot(111, polar=True)
    ax.set_rlim((0,axis_maximum))
    ann_transf = ax.transData + fig.transFigure.inverted()

    # Draw axes
    for theta in thetas:
    ax.plot([theta,theta], [0,axis_maximum], color="black")


    # Draw nodes
    for name_node, data in df.iterrows():
    r = data["node_positions_normalized"]
    for theta in data["theta"]:
    ax.scatter(theta, r, color="teal", s=150, edgecolor="black", linewidth=1, alpha=0.618)
    # Draw node labels
    quadrant = _get_quadrant_info(np.mean(data["theta"]))

    # pad on the right and push label to left
    if quadrant in {1,4}:
    theta_anchor_padding = min(data["theta"])
    # pad on left and push label to the right
    if quadrant in {2,3}:
    theta_anchor_padding = max(data["theta"])

    # Plot
    _,y = ann_transf.transform((theta_anchor_padding, r))
    ax.annotate(name_node,
    (theta_anchor_padding,r),
    (0.91 if quadrant in {1,4} else 0.01, y),
    textcoords='figure fraction',
    arrowprops=dict(arrowstyle='-', color='r'),
    color='r',
    verticalalignment='center'
    )
    enter image description here

    关于python - 如何在极坐标 matplotlib 图上绘制带有文本(即标签)的水平线? (Python),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62584496/

    31 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com