- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有以下数据框,我想从定义的列中删除异常值。在下面的示例中,价格和收入。应为每组数据删除异常值。在此示例中,它的“cd”和“segment”列。应根据 5 个标准差删除异常值。
data = [
('a', '1',20,10),
('a', '1',30,16),
('a', '1',50,91),
('a', '1',60,34),
('a', '1',200,23),
('a', '2',33,87),
('a', '2',86,90),
('a','2',89,35),
('a', '2',90,24),
('a', '2',40,97),
('a', '2',1,21),
('b', '1',45,96),
('b', '1',56,99),
('b', '1',89,23),
('b', '1',98,64),
('b', '2',86,42),
('b', '2',45,54),
('b', '2',67,95),
('b','2',86,70),
('b', '2',91,64),
('b', '2',2,53),
('b', '2',4,87)
]
data = (spark.createDataFrame(data, ['cd','segment','price','income']))
我已经使用下面的代码删除异常值,但这只适用于一列。
mean_std = (
data
.groupBy('cd', 'segment')
.agg(
*[f.mean(colName).alias('{}{}'.format('mean_',colName)) for colName in ['price']],
*[f.stddev(colName).alias('{}{}'.format('stddev_',colName)) for colName in ['price']])
)
mean_columns = ['mean_price']
std_columns = ['stddev_price']
upper = mean_std
for col_1 in mean_columns:
for col_2 in std_columns:
if col_1 != col_2:
name = col_1 + '_upper_limit'
upper = upper.withColumn(name, f.col(col_1) + f.col(col_2)*5)
lower = upper
for col_1 in mean_columns:
for col_2 in std_columns:
if col_1 != col_2:
name = col_1 + '_lower_limit'
lower = lower.withColumn(name, f.col(col_1) - f.col(col_2)*5)
outliers = (data.join(lower,
how = 'left',
on = ['cd', 'segment'])
.withColumn('is_outlier_price', f.when((f.col('price')>f.col('mean_price_upper_limit')) |
(f.col('price')<f.col('mean_price_lower_limit')),1)
.otherwise(None))
)
我的最终输出应该为每个变量有一列,说明它是 1 = 删除还是 0 = 保留。
非常感谢对此的任何帮助。
最佳答案
您的代码几乎可以 100% 正常工作。您所要做的就是将单个固定列名替换为列名数组,然后遍历该数组:
numeric_cols = ['price', 'income']
mean_std = \
data \
.groupBy('cd', 'segment') \
.agg( \
*[F.mean(colName).alias('mean_{}'.format(colName)) for colName in numeric_cols],\
*[F.stddev(colName).alias('stddev_{}'.format(colName)) for colName in numeric_cols])
mean_std
现在是一个数据框,每个 numeric_cols 元素有两列(
。mean_...
和 stddev_...
)
在下一步中,我们计算 numeric_cols
的每个元素的下限和上限:
mean_std_min_max = mean_std
for colName in numeric_cols:
meanCol = 'mean_{}'.format(colName)
stddevCol = 'stddev_{}'.format(colName)
minCol = 'min_{}'.format(colName)
maxCol = 'max_{}'.format(colName)
mean_std_min_max = mean_std_min_max.withColumn(minCol, F.col(meanCol) - 5 * F.col(stddevCol))
mean_std_min_max = mean_std_min_max.withColumn(maxCol, F.col(meanCol) + 5 * F.col(stddevCol))
mean_std_min_max
现在包含两个额外的列 min_...
和 max...
numeric_cols
的每个元素>.
最后是连接,然后像以前一样计算 is_outliers_...
列:
outliers = data.join(mean_std_min_max, how = 'left', on = ['cd', 'segment'])
for colName in numeric_cols:
isOutlierCol = 'is_outlier_{}'.format(colName)
minCol = 'min_{}'.format(colName)
maxCol = 'max_{}'.format(colName)
meanCol = 'mean_{}'.format(colName)
stddevCol = 'stddev_{}'.format(colName)
outliers = outliers.withColumn(isOutlierCol, F.when((F.col(colName) > F.col(maxCol)) | (F.col(colName) < F.col(minCol)), 1).otherwise(0))
outliers = outliers.drop(minCol,maxCol, meanCol, stddevCol)
循环的最后一行只是清理并删除中间列。将其注释掉可能会有所帮助。
最后的结果是:
+---+-------+-----+------+----------------+-----------------+
| cd|segment|price|income|is_outlier_price|is_outlier_income|
+---+-------+-----+------+----------------+-----------------+
| b| 2| 86| 42| 0| 0|
| b| 2| 45| 54| 0| 0|
| b| 2| 67| 95| 0| 0|
| b| 2| 86| 70| 0| 0|
| b| 2| 91| 64| 0| 0|
+---+-------+-----+------+----------------+-----------------+
only showing top 5 rows
关于pyspark - 如何使用均值和标准差从 pyspark 中的多个列中删除异常值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62640556/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!