gpt4 book ai didi

r - 优化/向量化 R 中从输入向量的范围生成随机数的循环?

转载 作者:行者123 更新时间:2023-12-04 09:25:43 29 4
gpt4 key购买 nike

问题:

我在 R 中使用循环从两个(“父级”)向量创建一个新向量,为新向量中的每个位置生成一个随机值,该值在父级在此位置的值范围内(它用于 genetic algorithm 中的交叉阶段)。请注意,我不想要 x 和 y 的平均值,而是在各个位置的值范围内的随机值。

示例代码:

x = c(0.1, 0.7, 1, 0.8)
y = c(0, 0.9, 0.2, 1)
child = rep(NA, length(x))
for(i in 1:length(x)){
child[i] = sample(seq(min(x[i], y[i]),
max(x[i],y[i]), by=0.01), 1)
}
# This might yield, for example: 0.02 0.83 0.73 0.88

问题:

它工作正常,但我想也许有更有效的方法来执行此操作(因为我需要在数千次迭代中的每一次迭代中为 100-1000 个人执行此操作)。在 R 中,有一些不错的快速函数,例如 ifelsecolMeansmax.colmatch , rollmean等,在矢量上工作,所以我想知道,是否也有类似的东西适合我的目的? (不过,据我所知,apply 团伙在这里可能帮不上什么忙)。或者像这样的循环真的是我能做的最好的吗?

最佳答案

我们可以使用 runif 从均匀分布中获取随机数,并使用 pmaxpmin 向量化最小值和最大值:

round(runif(length(x), pmin(x, y), pmax(x, y)), 2)

一个小基准:

library(microbenchmark)

set.seed(42)
x <- runif(1000)
y <- runif(1000)

microbenchmark(vectorize ={round(runif(length(x), pmin(x, y), pmax(x, y)), 2)},
mapply = {mapply(runif, 1, pmin(x, y), pmax(x, y))},
lapply = {unlist(lapply(seq_along(x), function(p, q, i) { sample(seq(min(p[i], q[i]), max(p[i],q[i]), by=0.01), 1) }, p=x, q=y))})

Unit: microseconds
expr min lq mean median uq max neval cld
vectorize 316.417 321.026 341.6501 336.0015 342.914 529.154 100 a
mapply 4311.559 4429.640 4733.0420 4543.6875 4806.535 9935.631 100 b
lapply 46987.459 47718.980 50484.6058 48474.5015 53599.756 60043.093 100 c

关于r - 优化/向量化 R 中从输入向量的范围生成随机数的循环?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33881761/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com