gpt4 book ai didi

python - 如何解释从 Google OR Tools 返回的 Vehicle Routing Problem 解决方案?

转载 作者:行者123 更新时间:2023-12-04 09:17:18 26 4
gpt4 key购买 nike

我有一个使用 Google 的 OR Tools python 库实现的有效车辆路由问题解决方案。我有一个包含 9 个位置的时间矩阵,以及每个位置的时间窗口。所有值均以 为单位秒 .
(例如,第一个时间窗口是从 28800 到 28800。28800 秒相当于上午 8:00。我希望这个位置,即 depot 正好在上午 8:00 被访问)
我故意只用一辆车来解决这个问题(基本上是解决一个旅行推销员问题)。我相信我已经正确添加了我的维度,但我当然可能犯了一个错误 - 我的意图是让车辆在任何位置等待,只要它愿意,只要它允许它解决问题车辆路径问题。我将上限最大值设置为 86400,因为一天有 86400 秒,我认为鉴于此数据,这将是一个足够高的数字。
来源

from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2

Matrix = [
[0,557,763,1156,813,618,822,700,112], # Depot
[523,0,598,1107,934,607,658,535,589], # 1 - Location
[631,480,0,968,960,570,451,135,582], # 2 - Location
[1343,1247,1367,0,1270,1289,809,1193,1253], # 3 - Location
[746,1000,1135,1283,0,1003,1186,1071,776], # 4 - Location
[685,627,810,1227,990,0,712,709,550], # 5 - Location
[869,718,558,732,1105,650,0,384,821], # 6 - Location
[679,528,202,878,1008,618,412,0,630], # 7 - Location
[149,626,762,1124,696,532,821,698,0] # 8 - Location
]

Windows = [
[ 28800, 28800 ], # Depot
[ 43200, 43200 ], # 1 - Location
[ 50400, 50400 ], # 2 - Location
[ 21600, 79200 ], # 3 - Location
[ 21600, 79200 ], # 4 - Location
[ 21600, 79200 ], # 5 - Location
[ 21600, 79200 ], # 6 - Location
[ 21600, 79200 ], # 7 - Location
[ 21600, 79200 ] # 8 - Location
]

# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(Matrix), 1, 0)

# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)

# Create and register a transit callback.
def time_callback(from_index, to_index):
# Returns the travel time between the two nodes.
# Convert from routing variable Index to time matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return Matrix[from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(time_callback)

# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

# Add Time Windows constraint.
routing.AddDimension(
transit_callback_index,
86400, # An upper bound for slack (the wait times at the locations).
86400, # An upper bound for the total time over each vehicle's route.
False, # Determine whether the cumulative variable is set to zero at the start of the vehicle's route.
'Time')
time_dimension = routing.GetDimensionOrDie('Time')

# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(Windows):
if location_idx == 0:
continue
index = manager.NodeToIndex(location_idx)
time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])

# Add time window constraints for each vehicle start node.
index = routing.Start(0)
time_dimension.CumulVar(index).SetRange(Windows[0][0],Windows[0][1])

# Instantiate route start and end times to produce feasible times.
routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.Start(0)))
routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(0)))

# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)

# Setting local search metaheuristics:
search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.seconds = 5
search_parameters.log_search = False

# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)

# Return the solution.
time = 0
index = routing.Start(0)
print("Locations:")
while not routing.IsEnd(index):
time = time_dimension.CumulVar(index)
print("{0} ({1}, {2})".format(manager.IndexToNode(index),solution.Min(time),solution.Max(time)))
index = solution.Value(routing.NextVar(index))
print("{0} ({1}, {2})".format(manager.IndexToNode(index),solution.Min(time),solution.Max(time)))

输出
Locations:
0 (28800, 28800)
8 (28912, 42041)
5 (29444, 42573)
1 (43200, 43200)
2 (50400, 50400)
7 (50535, 50535)
6 (50947, 50947)
3 (51679, 51679)
4 (52949, 52949)
0 (52949, 52949)
我的问题是关于解决方案为我计算的输出。我对解决方案中第二个和第三个位置的时间窗口感到困惑。我希望所有的时间窗口看起来都像结果的其余部分。 solution.Min()做什么的和 solution.Max()当我处理我的解决方案时,这个问题的范围内的值是什么意思?我在使用 OR 工具时是否有任何明显的错误?

最佳答案

Locations:
0 (28800, 28800) // must arrive and leave no later than 28800
8 (28912, 42041) // must arrive at or after 28912 and leave no later than 42041
5 (29444, 42573) // must arrive at or after 29444and leave no later than 42573
1 (43200, 43200) // must arrive and leave no later than 43200
2 (50400, 50400) // must arrive and leave no later than 50400
请参阅我添加的评论。当到达时间是一个范围时,比如节点 8 或 5,这基本上意味着到达时间需要落在该时间范围内。只要满足条件,该解决方案仍然可行。
您可以按如下方式验证:
Depot [28800, 28800] -> Travel (0, 8) 112-> Loc 8 [21600, 79200] -> Travel (8, 5) 532 -> Loc 5 [21600, 79200] -> Travel (5, 1) 685 -> Loc 1 [43200, 43200]
在时间 28800 出发,行程时间为 112,您将在时间 28912(解中的最小值)到达 loc 8,立即出发,行程时间为 532,您将在时间 29444 到达 loc 5。
现在, loc 1有一个可用的时隙,即 43200 .因此,如果车辆准时离开 29444旅行时间为 627它将到达 loc 1在时间 30071 ,这不是有效的到达时间。但如果车辆在 43200-627= 42573 出发它会准时到达。因此,这意味着车辆需要闲置(松弛)一段时间才能行驶。作为两者 loc 8loc 5有一个范围,解决方案表明这些位置有一些可用的余量。因此,最小值和最大值真正告诉您的是,只要到达和离开在这些范围内,解决方案就是可行的。

关于python - 如何解释从 Google OR Tools 返回的 Vehicle Routing Problem 解决方案?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63161785/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com