- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
只是为了好玩和训练 R,我试图证明 Monty Hall 游戏规则(打开一扇门后改变你的选择会让你更有可能获胜),我制作了这个可重现的代码(每一步的解释都在代码中):
## First I set the seed
set.seed(4)
## Then I modelize the presence of the prize as a random variable between gates 1,2,3
randomgates <- ceiling(runif(10000, min = 0, max = 3))
## so do I with the random choice.
randomchoice <- ceiling(runif(10000, min = 0, max = 3))
## As the opening of a gate is dependent from the gate you chose (the gate you chose cannot be opened)
## I modelize the opening of the gate as a variable which cannot be equal to the choice.
options <- c(1:3)
randomopen <- rep(1,10000)
for (i in 1:length(randomgates)) {
realoptions <- options[options != randomchoice[i]]
randomopen[i] <- realoptions[ceiling(runif(1,min = 0, max = 2))]
}
##Just to make data more easy to handle, I make a dataset
dataset <- cbind(randomgates, randomchoice, randomopen)
## Then I creat a dataset which only keeps the realization of the games in which we carry on (
## the opened gate wasn't the one with the price within)
steptwo <- dataset[randomopen != randomgates,]
## The next step is just to check if the probability of carry on is 2/3, which indeed is
carryon <- randomopen != randomgates
sum(carryon)/length(randomgates)
## I format the dataset as a data frame
steptwo <- as.data.frame(steptwo)
## Now we check what happens if we hold our initial choice when game carries on
prizesholding <- steptwo$randomgates == steptwo$randomchoice
sum(prizesholding)
## creating a vector of changing option, dependant on the opened gate, in the dataset that
## keeps only the cases in which we carried on playing (the opened gate wasn't the one with the prize)
switchedchoice <- rep(1,length(steptwo$randomgates))
for (i in 1:length(steptwo$randomgates)) {
choice <- options[options != steptwo$randomchoice[i]]
switchedchoice[i] <- choice[ceiling(runif(1,min = 0, max = 2))]
}
## Now we check how many times you guess the prize gate when you switch your initial choice
prizesswitching <- steptwo$randomgates == switchedchoice
sum(prizesswitching)/length(steptwo$randomgates)
carryon <- randomopen != randomgates
sum(carryon)/length(randomgates)
prizesswitching <- steptwo$randomgates == switchedchoice
sum(prizesswitching)/length(steptwo$randomgates)
# Prepare each variable for 10000 experiments
## First I set the seed
set.seed(4)
## Then I modelize the presence of the prize as a random variable between gates 1,2,3
randomgates <- ceiling(runif(10000, min = 0, max = 3))
## so do I with the random choice.
randomchoice <- ceiling(runif(10000, min = 0, max = 3))
## As the opening of a gate is dependent from the gate you chose (the gate you chose cannot be opened
##, neither the one with the prize does), I modelize the opening of the gate as a variable which cannot be equal to the choice.
options <- c(1:3)
randomopen <- rep(1,10000)
for (i in 1:length(randomgates)) {
randomopen[i] <- options[options != randomchoice[i] & options != randomgates[i]]
}
##Just to make data more easy to handle, I make a dataset
dataset <- cbind(randomgates, randomchoice, randomopen)
## I format the dataset as a data frame
steptwo <- as.data.frame(dataset)
## Now we check what happens if we hold our initial choice when game carries on
steptwo$prizesholding <- steptwo$randomgates == steptwo$randomchoice
with(steptwo, sum(prizesholding))
## creating a vector of changing option, dependant on the opened gate, in the dataset that
## keeps only the cases in which we carried on playing (the opened gate wasn't the one with the prize)
steptwo$switchedchoice <- rep(1,length(steptwo$randomgates))
for (i in 1:length(steptwo$randomgates)) {
steptwo$switchedchoice[i] <- options[options != steptwo$randomchoice[i] & options != steptwo$randomopen[i]]
}
## Now we check how many times you guess the prize gate when you switch your initial choice
steptwo$prizesswitching <- steptwo$randomgates == steptwo$switchedchoice
with(steptwo, sum(prizesswitching)/length(randomgates))
最佳答案
每一轮,都有一个 Prize_door 和一个 selected_door。 Monty Hall 将打开一个不是 Prize_door 或 selected_door 的门(setdiff 在 1:3 和向量 (prize_door, selected_door) 之间,如果 setdiff 是两个元素,则在两者之间随机选择)。那么开关门就是没有选择或打开的门。
n <- 1e4
set.seed(2020)
df <-
data.frame(
prize_door = sample(1:3, n, replace = TRUE),
chosen_door = sample(1:3, n, replace = TRUE))
df$opened_door <-
mapply(function(x, y){
available <- setdiff(1:3, c(x, y))
available[sample(length(available), 1)]
}, df$prize_door, df$chosen_door)
df$switch_door <-
mapply(function(x, y) setdiff(1:3, c(x, y)),
df$chosen_door, df$opened_door)
with(df, mean(prize_door == chosen_door))
# [1] 0.3358
with(df, mean(prize_door == switch_door))
# [1] 0.6642
probs <-
data.frame(
chosen_p = with(df, cumsum(prize_door == chosen_door))/(1:n),
switch_p = with(df, cumsum(prize_door == switch_door))/(1:n))
plot(probs$switch_p, type = 'l', ylim = c(0, 1))
lines(probs$chosen_p, col = 'red')
abline(h = 1/3)
abline(h = 2/3)
关于r - R 中的 Monty Hall 游戏,带有基本函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59684522/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!