- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图抓取一个名为 teamblind.com 的网站.这是 start_url - referrals section. .它在其页面上实现无限滚动,并且执行简单的爬行仅返回 50 个结果。我想获得推荐部分中的所有帖子。
这是我的代码 -
class TeamBlindReferrals(scrapy.Spider):
name = 'blindreferrals'
#define the start_requests methods to iterate and generate request objects from the start urls
def start_requests(self):
urls = ['https://www.teamblind.com/topics/Referrals']
for url in urls:
yield scrapy.Request(url=url, callback=self.parse)
#define the parse function to extract data from the website
def parse(self, response):
posts = response.css('li.word-break')
for item in posts:
yield{
'title': item.xpath('//a/@title').get(),
'views': item.xpath("//a[contains(@class, 'view')]/text()").get(),
'comments': item.xpath("//a[contains(@class, 'comment')]/text()").get(),
'likes': item.xpath("//a[contains(@class, 'like')]/text()").get(),
'link': item.xpath("//li/a/@href").get()
}
我在一个答案中发现,可以通过检查 Developer Tools 的 Network 选项卡中的响应 URL 来抓取具有无限滚动功能的网站。我试着检查那边的回应,发现两件事 -
{"payload":"A3gsuMXojEEYlVQHu2ld18xcBQjIrtI5Cm7Ly054pm7xyRXEpltmAQbbfSeNqY7IsV4zOkFbFB47RoRyPPLay+X4hONeta1VRuBpQmuMA0K20QbyF7pmh1qytGidq9YclLLZTB+ejk1C6lODnWuemumVwyAss8qAL9U9h8CB9eWLZD2a+CvSCtuwahfX657LdqIFEPcQKR3CnWtUO1qqf/l+0E5TEGHsNx9QiQ47elDka38lie60pOOhZAbJVw08PZxcYKQFuu5Vuaf27MsRCZVPXR24djFQUlbIKVzLd1yfX1mkvcxQNKOos7yhg/Np0m3ZO4mdWyUmC1Kv9i9CSavw3jYJYG6Ui/ORpZwdF+l83jNpLv4tfyDYnO7XWel46avMt6qtsx4Pw77cr0AjCPwzYHDsPAbipxtFE1+GhANlV8T10HerRzthfHErCdvWM79Gt6igTsYVJtWzmBSlJP/T4BFRsDkeg+i5icKnp/HfivWFDOI7lx3gKfb6Q+GJ+X1Bnpssd1jOtms934QtXlBnF1MkXZeHOx8jcQdLHjpIrnTaFv5JVUUTzz5aFbICLnDUeEhlur8qyLL1zBC+NowtbZknYkiofdls4qOn723EtOPVuwsL/ii51ijAb/Iy51YUIvM0zIjo9SYzBOh9IG1DeMl3WVdZp+BtVir/iJv2To0son3hqPBkUQCtuOisD2VQOg5GqA6FQe7tDOg81TkqQgn8whLNDwXBW84xyI84g+OybTEfrwRH8K1byWKeruN+WHDVEOy3aMb0G87gTkv+DAC+SvQ8/r2E2BGPF4olXf6OrEUr8iJZE2m/TVowA8eGADKfOgb2nt9ozPhSlXAa0I8YZEqp93eWy942ocmFBA+OU4a/s/ff3dF1nQYa9KJciq5dJwhgaHFozAxcTkQGUksr6RiQnm+gPiyGKBQoFjeuFZ8UdHQML+feX/IMh2vYYgPGAN7xSzr0WWJID+XMEFpjUq6tM6l1AzVL/SDsGwyjtFvdorEYA2qMDU55oRe5/mpYV5K1E+G0wxcS6BaufC+FB6Gn7W+sRTiKZ2CQiyAgf91o9/Ebvcy0cwo8YFm2eNlFkcxvvVuekEQcGZ1qCWTtxKkh38uRaSfNLS8kWPwHBdmjTnQtPaKIFYy1efpm4TS2H/4no/0+dHcn1uUQnngCMhO6YQkyaZNnMY6w5KCQKHyXiDf8QFOCuVRVjGAVWjFP9kqNROHyNP7gmJaHf9mmLHZGxaJl4XVqG9xZ0napMz8JXYNvk8tkt2ml8LjmkCrGsRG7kjwHeVCqX7S7IzdJQ8D+WQSIYw/dO9t07dDobvGtNk8vK/vMOGM3KTy2+b6Do1+bz6ZsasvunwZiTRFTbFmaR10ACBWjCnj+TbkJLpisotBSQLVrrx0VxwXA1rOh6fE46icgKkiE1g/K7QM0DLDmbTPyqNbO0OhJLA5Z9JZlEm7krBY0FIL/SRB6j0BZYUotOhrWMa+AlwO38icrSBv4UzdFqQkZ3Yf83ZM9qwn0/E5Ri+6IbiNgJso47EoUmwGLSm9V5B76Z2DnyYlttSa26h/WQblPGvu0X4sGg0BsmaCDo7FGFlJvQcMXzUEuwd8hYYucjWYi3rWYBixQFNsgWMAPSDc7tb/UBGY3eF65x0nByxrdFNlvns3jfnxiHCiFFebS+lhbLomjFVK8GeHpowHUnaiq19LDCVzFgVUbUzuHy6/tl7Lb1yChhR/VB6as+a0XQGdwMBi4OYABc69FYGK5nxMTW7wgV6yCFcnlocW1W9cFTk687Pnz/+NisJxxbBuj+lQnv+deDervic8nIWIBzq2tEU0xNWTT3rW82BVovRnuSnpowKtMP7lxCbhU81Twrgz0UNYUCtHFLH6eiKeLB7jz2lVdt1mwCYx6f6bn1PIT9pBWkUeGfLLCpF5GR4Qj5o79++QdpO9REKQ5IQs/hZAd45EcxMeW8ynZbK9hqfCIuRGWJSAyOTVRysnRWFa8m2n59uQkZCEvg5aG48keokqoAfA5Vk/sVKf4SR3BF/OsZ1BUtSXtd/7X9McNQI6HID7XyonEhDv233CnaRyoMv1qIuUSTsbiqXrV0QE/hIpYMvbIPhnHr/soZzC9HUrLBPcGNHg28WnSxWDaYkq8PF9GLDGOom6WdahF2DGxmt/RZlxW6u7K4gqHKbmRoCexiHWvn3LuETRm7ecfxDXS9yt8j8lWanVsdFH9KBxA66rRp2lzy9NsG7N6yDGlKX0k22kucHs9kMGrbpFUs5DLwq1WvCzG+CsEhwsfaWtFCexSMRYZmPilQooE3bAhMcAeTmsDkevvMCLNW/EpJNceWMylUYVlyXT/vaO84Ye3kiA0ZAr62iskHAfbofigsK8K2z2ZZX9rcwX6mXHE97jP0FUGmzXmiZQBBBHXK8VlycnumC9ku3uJIt0HbZ0maGzUM/W5ivlO7VcD8DUJp0K0T6cvM/aR4bMVZErPucCNLh9GbLwKJLpzhHJS4IzY3laj9eEUWuka2tCF75U/9QdRR9OnEK9NzfSs5kdxDwwGcyVzXAaFQbu/m3bxgd7DK8NA1OujnPw8O/dnJdVB4b0LZA9ycO5PJTC/lqYV6uuKYc8UfcmjXYmyJK7eTHkJqBVaThJCJjuJHDYebtfB4rljmpVXuaMPRih3scX1nP+2dmHEuZLhUU9dzsxmPwTZzrXePPof+bH0Ki66AFYGjEzMRQeaxNEKGrgb7OnpVQ1zVc41j3WT47+/WbH5irBSWx9IbYdgx6xiju2Ak9bcGeYTMXdJ64h3S8P3fUDokkzynj2Ag8Z17N//cBvwK0uT0KV3kGxGq+DkNXBQYNW3VhEJTfLwg9haYfe7cZ7Xt0/41HtOmvCg9u6Ej1WY8oIqKE2lHCVAnHwsMHky6fzsRHrAihJWqccQlFaGin8PC5lQW0GIs23WiWs3LuPlt9mF7ol//qSawhGgItJsZLEkZBeJlb7fJ4xHZMzt6TY7LExa0NVCQux99tG/vn84I17kEnR94N7puaGaFx/fi0sPcY9pP4BHWVq55L+pV0WGqQ1mZoj5t7fiqYi23Z2xcFnTkfbbbe3jh7MfhDVH8YGUPCGBFAgL0Zj1f7wQgmgZmUsv8v5IHjSGDXK94JTxMkOXlf9EqBcIj5N+/tonXRU5S5SLOs1E2I4E0YcYxqZ/Zgah0k4KGSbNWz41qpvkPivxEqTd05GwUxRPeYlnW+QyMTz6SjpQX2HPwEohpFnfFlLSn6eyG9k4KvyNfRi81iMUVUcQvrs3tD4U9G/g3zLZpVGYNqvBpTnjpHXXigfEAmH04aNeFr5zt4W8rAsx0ZugVpDZTDn1NjZj7Ql1Y25JNSoeDdyk9TZyMn7penmbnlhXfUla/Q3wiDbgvGDEfNLG+kiyzCsvDHmTUcUXpP8etyTtiLZYyWFr4+RWJk0sQCL3zj08/QajIWycTImf+hLUQVqMayv9q75SqnoxaxYcB1VqImUkIzWKR20Ivd9qP0KttjwV5u+RFBys2q2BNFwudkddtj9SHCvaCkIM2OyRSOv0TIthqUYymm0KS0CQbGZC9LN6Tu5B9zpnQuA91iLkGildi84f2/TEuI4J+sTgy18gPNB70ZwCNh56ZQdtDPi/vHtnrd3WagEHWndMToeXqQdFIJU82mDFF+f95gjv+0syPDS+haRk8WkOaF5nd2XyUEPCY6rAiOGRlZ2cJrGVNcOf9jWdA1X6sZlBw3wzu7iQD7U65V6VRBUdX50C27xyEESovYtGwRAh5VYQW+CecHzU3qlo3VtSxlSuaAUQsXslMEZ+9OjdlghYF1QTP+dtG4lnB3jJ76okraKBxfEj1x9J5p0Ys7UTwNkI9Ne5f1snoWgcGCuKFtP/MtCKrka4E3DsTx+oN8974sP4EMalJeytmhPQduP/g2NclJ7SDxjVbJS98lVyhFBmOPUHefmrL7a4k8nS1MRAl9I8WN37YNkn9OGh9Kp7xXAgYYNqJx21rz5SZI2jKCgN+sC6oJe2exLs7+YjCAjXzonyKet6NN3jzkQniTG1dmHF3Dv9k3BTxa3w3YkwxBHPBoNvTj+jOMmjVk9H6p4139aUNHfFOtx/Id5E3ySMbLE7Su9xxIxudeaDURYEa9bAQCf3Lt2x1vsEJnWvWheVt0L4efkXpXST9q2g9n58v8dukgMS4wkhLqJ9LfoD5JF/cTJ3N6z565UBIFpf2j1U3JwADLis1QO7bQscQ5oZ4QavlHtArIGfOYLPeDcm6xL1Cmz6gI7RpaYsT9pPat8lMRqJ1s8JaJiCZvM1w4Gr1Lpo3N2CljAWcr6dqkLkXvZcYU4ieQw3AJLqcOYH4tVWzrZIDWTnJhS3ocNDeW/b3qiV8tjf9icUXbZ+A6OLvUSS1Tcnwz6XrHdcGeSWhTGkbHKjajQvMiJpH6/lnh6GxgoJq4Lq7R0xNDd/KNGBpLfkh2foUIgg7R+FrBMAASVnhThJc5MnhBbIYYKiEbrFmlWViZ84oQ3ste3R5I/WIfPnTTBQ0S7bMyMggzM4sv+vJdtNHC45SNuzVmsrgY5f4g3QrvS1I1MzHV9dDDwUZsB0ZgKoWzKZXdCqcM8s24EMYkmlkTiuX0pD9bLIu2V1xpDBpFp/Tufcl9WAfddcTJ1twJlJDhdRe6Jkka6HZJwYypMtXvQ9557p06xywmV1RBwPIYThhD6+S64XL1IxMC+8UJkX8wJCZPMluRS9R5cSjLwzARfQb+BX8Vk58a2pD1rIxaSDAQ3W6d0Py2wWxJAr8qJ5bqKEEq9NruY/EtDurwEOHabuXMv09O29CULKAL/7Gc1HoOJnRNwYrd/Bx64d/GuUn8eZxJCOk84+WfJffLRsBkZE6Spr1YN+XJYtBeseNuYFOJzZ+vq6omdeanFtEdd5i71znnAYwsewkA/VlZNI7lQ2NSMAUOIA2T9qMjMv1VYBtGMhXYQ/b/BIqR1dCACnzygTTLbmbofwnPEQD/+JLjicDy52sQuZfd7SZgHZiESRR+5NXxS1BLVgahhwSMsplTnhwsdLlfXu7032UyAdbAWkKW0L/L6Xuw08P+7lvUAmS2/cDtmlGE5CzWHQ8cel0QdYVjkdsseBIAxkL1saCWTJ95fA29y4cFU95l/Gw+yU7Ll/hT12Y/PCdb7xqq8MvdpAk877TSesswsbfdK45eB7IbVi1v52C06uQovANtwNJjL4GQUKX0KRRdj9fEzZ5NRtYo2OdJk2OZSWHtRohT2eK7taxpCKe6Z54I+BbWKxGW4Tx1eKlr0A1vjSHfj2m6y9kXdbjB1AlPnUprcFtX4Yp/j9lrJYGH4FjXvznN4wMVt582OXwdaBwArhYEladldq+7Lt4vLN74649FIAI7+Sya6EPWhvhzKMa7jy8RFeOiJG6UM3685DgXRjdKjooTVAWhd+sZKW9bhQmgnnXr3hndpuy1TACr6TxrOMWNJiIrYOKIzfoHj7lvwkDweEpzYjnsZptVCKtBVm+NZAZwxQzSY5VsSR4ptmeMc2oP5kfz/k6HNMarALKUJwZ+N9zcbunxPBz37dJIVqhpBDk5SGyGLCnZW34NHtqsmeCqy/yhW76B5SGW+1R6Dj5tvRpeosCrs8959ORmKHoD2Lwf5xhcZaX+UW+2u+2bDbJqPNCEggznXBOyNL5Q+ueRJaF1kUsFlNTD+eHurccmU5SQykRka1dbBpb74pyVE+vi5I11jamghUn4vEJECzn3pR8HsViRwuMR5GFDOEfRPPZ0orTqk4nQA0X40F3qnq9H88+E7RQe0Qu6E+2MJv6M0nZt4ZLjWKwOcKbAv+0vBLWoVD5jFcVVPpHe2cA+Zknxk9pbRsFkf9wLf0RcczidzqWtuhk3XjsplnpUBP/IwGdw9dPKOyaqfmAxVrhb2j8xT66orBLHyoYR/2Gd9ueWn6iy9fRw0BdKSIod8XJPzxTrEbVttObFugZPac1bY+TyI6kczHYF5QEop55zsclEgdPr01GuWW9takOsjHDkKeja4zMEsE1Y+WaTqOK5vKQ1RC/e6JOvw4RKpfAPKRZxw5ZDeAbCe1MyIDWDOS9kMgGv8f2hayNwFG2sbDnIVdsWYvGf228TczJhfNGMhdNQXr8QjXZ1DYOqLT4Wi+zcCeSkrhYHLieDwRKFR4gkNWXEYVYMTwg4981BCchTqs0zRWuL7K1JvhYeyTOq15RWnDeqcM/aCIib3dWNg0o9nR2DQ9yZ4aHRQwnpVXJDMNxsw63sgH3wKHOSKIDDtv7sPBtpLq1dIdM5Y/FTDW1xm27c7qZcpMcPyrNTAtRO0zcGlXMy0BuPPPQayga8qx2VAkT/p/311eqPctUPjPxS1vt2YKGFbUJ3WYBZ9AZa/GX5Xn/3OgsAop0F1aEQXN3VWS5uW19U+WCiETVWDEKPnAjP79KCyZXnw7hnyZzhNV3fljX85OiaVQD+o2H4a4uDndGKhoz5/A7Rcs2tV5izdvXlEtanYmRS8SfDzzixfs+JrfXEWWGRrF72jJxlNrOUpsr/usnGAOpZtEBiSA/P56KGrBzF8ULYsf9Ijut+1OethrLSuaEcqv3qW+P9jScBK+nAL+qOFegRx69ntWcNxXQosauNLPsnF0b9jhaf/ff5Fa0lhxS5id9BRD82fMU0fp4MwjhtQdJHtSWcROrZyb3o+k2JAVkBAVOs5tzrBgpIhZwZKob+Gw46GzvWD7mq/z8CbKvhFRVpGy9wYNG0tOIhOiL+4qoL5ZROBYx5DSXq7f7/6rU9MCRse6nUT4+0sbRN1xWK3szC0xryOZe2HTzb2dyAXnyt1gRxJbiWp5UXVeTIo3EC4QXYIs0M4ux3+ZFP+PKsIaonQepAwISedaNW20Z0zPQ0gksJSLZFVlgFgFavClLSXGdzGeMK4Ij3NIv1gUAnqsXn17z9U6eMSd4Rosew9EptsPiRUcFwY2LwtnrxCNmdc0AQvtJ7hyMprkgCQb+ry3pF0gLK3+JxKGOj9LQV+fPQlX9V+jdsFu3sJzxqVbu2ApVHv6xWERuFC0u0d8y0LEKuetY49UH8DLvYFWGr6nEjh+SCQBB2YErbF+leU11CfvLdpW/N0EuOv1kgUouHsu51jpfcnC8gGGc0fTw8wvnokfy+TEWI6B258T1dStZLORoMz8bt+Vz5PAj09z9ADiakj8yADkGrdcvFhGylZGLiftpvUxHWewdBRjM+/eviqa0RXfHhFAhRNBHhcMZtvAy55vaCzfezNtrtj94ZrhFh+4Eove74bKnKZ0/TE+GoOSZIOnSMYyVh5eBOm7uD/aZLVs/93rMGCFfn6Sxar209ZRqTuju71ELPpOM74BmzB5JdS95p1ittMMrORcQKQkgUi5PqyMKDZnWn1ffoA68cf4rNb30oJcoDyranQZQW6lW81Afvi/0Ioa8bWw+c/PXKzHNqDaS3+7sMePIHvOMbjkBgyPYgNIgMbkSjlcjTjINyl5kg71tV8u+o+aYFwm7JF67aQPivCumcNK+KWionJ1552Bx8qbnQMf5ZZxDuyyQxjfSZILePJjH/8xRV9nv2oPVhqM6keTtOF9Qh1mYIvjkaXbOA9X/puIz/gD0nIKSIONLwrAr4IS4Xk22u3iCufWlFnB15fSyxV/yFQJZ+sfMYNoD3ZbHui8Lj0q5by8Gl5E5DfJUf5SuoAUxuRNN6Y2tn2aLbtRhCexO80o5PJ8t9LmRa05HI6vquHtqZAL4zmVaAFxuPpOrM0XdzINcjxVGsm1oqRyaQnx7/77x8cUp1VyVyE1+TKDNw0dUuyupH3rDSv+VoWD6sxIRHKtpPt5WdBR6edF0S13f/7IEm8AkhB5Jmzsn1em/lp2qF7n7o+xFT5qpBCbtSwk38uspOJVmcB7Xco6DCJcakPzg6+Q0JgIVzVs2TmqG7LaQRFilkfq3RYbaBJx7sBLkEVBAlza3lScUEAhaSiJukPxP2athe1xdYj5wTQ3naZ/htP3Wig/V3U+Xr/tvhe+Wih1TmSPeZuoDBjt/Qjucj9pzKFoy2wcZsWl40ZCKCnuzcCubUugAfGQYNqtyb6MUpCOkpq8p8/IquPzlcAZUB3Wq5w/OQ+i23393on2P67piNe1vY4NCJyISwZRBLZMkSs+uGGwK7oij0xXnZQ18fYap6PiRpQlucdK9L8GlvLdTipHYu7fAK1won58Ftw0DyuioqfDlQuLYgs/M8NqF1lkXh4sWtd44DZm2DIhJ05HAAl0jWeBOMSQEWDVu09d3Bclzz7Vk21tJlXLvuofFnMoN96JlY36cJW9w68NwJJ4gi1XXbMDNN6+Jwe9+V7d0yWZo3nfm3PqvdPc/YIXq/NRIII/nelu+kez6t4U0QZGDGE2+bUKIfXHdTKtqU3zkIW03VDyutqv/pDICRS3YEezdZX/rdSwheMgoLB6vT0vFntutNm5IfQ+thDoGyjtHhTk+nWUdIs8MJR/wsrcWulGC94GPzKTlq0mSY92iYchkiqKcdzppCUapRGbZbpmT/haZw5laHFqRQKsi6BQQ6s+bMQ7pYrlhRQ4pnGKP5vmVzbc9b48bWVGSz15lM6Tb3meym1uWVybEDSNG93rF2Hd13Wl4VzjL1/Hxv7QgOCkSUPGyRqoJxBlon2Ajlozi1YdNihazX9xwgS3gNA+q175hmT5Ijbzoa2+d5BhQhyYbgvkl91t/aARPuCatRpPcgyN4jk2vJ1DQWU9ntjs8CqTs1qAQG0Mu24inAIjooTZgPLIREN2IfY8mOTIeeDHumY+vbiwm6EFqGIy4hOACek9C5Xxyl9klPR8PZX1UE9ue5ljDMsjzHMzea9SnG1qqanvvdrQyXwb6XOgC177AujKL2YAhF33IhuyzfgqsZiUSrh3fEqdfsd1TMVi1nkq4N9y7Z3BdNE0aRrzCiEYy9EDDsoMOx4nqUX37Twu0AB+lTclYd8eBU4C/Qd/fJeWxjJoVTz/zP+1wOAD9PIE7mqR8zV+rjQelTX4ikozJpUwaB3/OCXdUmIrLlTUYip+EqsJepRCE3ZkOqBIbyjBwSVgHZFWtO/wWFGGdYdjGChpl3B0EPL1TvKzkssTMpWTRtc8xfVcYwwu9KSqrBjL0B6ZgLYplOV27AeJhguA+oTbU6JhEJCjx49IryjzUgNyPMxhTMzY4fifWK0FT97Ngcqo6+rQyzZ4WZsOF2p5EeFgzzhkSgn0GPc5A4cRESdR52RUb0EDAkKub2K2xKN/vw0FY/u05lYaf7WActndtp/NCMgoLz1jF737iBxg14Rg4jcD5RWEYEyO6zskvuPdL8tfUdCtjZbQ7vnC/9Pvaj3odykP6kcv1K+ZS0MTxIn64+RLqPGiFOGWJ/I/oJW762WxbZxn6LMPTfCUp1hSHjqf4e3HoAbuFKDeJYLemzR2Q0Qck6s1kW60VuNxDYBn/Mcm6d+ZDMXqzCzXunkjoiimgzUwDiofh85nxvShPulvUfEyO/u+Z6ONDNrS6G+W9f423HrM88YeQVPwXGq4mD/9GVwhQ+wOQHxMRTjo0rl2TfY48g+D4Pe/wDphNCyNXf+LlIbMYDfOvjBG126nO58KCyvlIltR0Bg9AftVz2R2trMS3rSSIJix9cj7nWoxjz0orydgNZGC7R1aTNnRoW7yNG2cWm/9zAUffx1VEWq061ebrg8WdIBD+Xi2a+6VhB4+qBd/7FUnt/mtNiekM+TsBjyAUH9RxLInxQFKHOT6NoxKPenPAF6dagdwUUeWHTiHGtnnYB358DfpBwwq9Dw7w1ghhTyGtjSSLgm1ODIP3r8kllVE8KDYc1cMZLWkJP4OzhispqI4gnEojdDcVsf3XyIYlghhg/27iT63ss+qqUP8jBJWjs6wsTWhKfpCMRFUas2fKCDgnLyLsfgSPobstUAy0jlrq1srvMIqbBOAV8vUU9eafCb9VhVYREls3IGycafLLHsUTkAUdnyoXXoDtdLegHzCCLjwt6ZZSn8sC3fyeEQZ8fdW0dX6o6VvSmsq7IfNMa+6IvVZrveRBosBWOORqFDH7ZKGMHX4SbWlRERjzFaGQBroUx4eVDU0awpQ+qEmtIIP/mbT7pHrAn1ml9Z529ZA2/ZaYFvb81xQA/Pb8HNmA5P9dG+UfSatWk/nv6QDQs75BlN90dq86DGu9GakDnzLdoKADWfO2sOL7LXqrvQfRhAOlzAsQaDBCenty1d0QuTo01l5/+/1YEKgQQb/I9owt5ifMVDAHIJ1b1CdBmh7dnlunCV0WsvwowE0dcARl72Lnd6/jW4TO/pGVwwMLIsHdTrTt6BrnWSSHnQxEzR4mgMQRpiWm27+KJv08xdFROVMOC8JnMcjzP1jscs2nSb+ymYCVhi+Rq7YIwqyXCyrKJrJwK6XMzkUgnbvR/AkzE6CcG+pLqpY5R1y5PaBd92Ka4x0iw1eXKWimu/Ky2Fh0cDWyND9HytRVDzwr0XUlniEDJHbv4nT5E9WbFTX0LjNa1rrB3U5sg0C4MzOeZEEUJH8xAnAeomlwR/n8toejySuYvWFYcXz9LjuNrM43rMQI/T//+KXgbcaTBV9svYE+UZiEBxf0zaiZE9btIn54hx2jaTIGNhQ2ba5el9DUyTUxongGnqEjxbxpm2anJzBP9a4BXj9CV+1lZW/2BuWGj9N4xILzzsJPSy+ThOVHADEkxyMkBRGd0bbZBoUqXHIYimy3Eb9oC8+nUaStFIAOQvAap4EvNW9Y5YS7UxQl+edQOjivplMDhdaYEOukMPjiv0oizgBImUosNLVfPYY8tGoRBP4enaKUwjab7J9k+kefwORzKIyfAuPN5F9nHMkJkx22VCj8Oo84nre7ZbzZKAcLmhgvLg4JVaC+l6002Hae6MGa91xC5M3+HkEi7JLzsQ9MEdjvI59sF8lE3tTreEwYioC4Az7UCiwqW3T/6txXhR5flysWi8uqyOJEZEXAcTSmMpw3VxZ8b+4KoEu6RF53fMC+EmE/D35iTPHzR+yuGwQS1RWnXbAKvhG367RxgZ/qShan5eCUZlh5g/0QFWHdYzOz08eHdrDouFxpA4n73EOQBLvb+8tWp/33VjvgO07zlHe6dl72an0tFeVGWwnhXEtoxaE+EoOG3ntkepy8FZ9sg1MlRIPxFXUvzlnwnSyWqwqW0RDgy3vCi/wK87GRD3POxL6TY5UP+MdxBKTBJhfDF4TvMvAvRWbWbxRVChK3DFcKY3R9qoqsryT9FtwcPyrs4h/lLgvN43LJs4r+OP9DvE5FeBkaF+wgTVhKw6CPNY2OZWwedDnepcnl38yayz/FFu8q2Wrgw3hB7qT6cxnrDoVubOj7UZw9xXtsNx7k6w1Sd368GqP3mb1iRt3874pulkdeU694p5S9UF6y6AzPJrBwlTeWBrhzTD88dJ3nU0Z1UCOathBkS+ZapRs+Vxvvgs95MO2IOKebsxq6hR45tuqk0MQFowFFemuibOTqDxDsZlOw/zf38HKj2QXltLh3jijJMInx9CyDKbqbNxP9rl0MukQiJFeebL4V6CaBXeh5BqFEWeEhHIL57B6h5n9V1qgEAQZaW8OFabGocqqygFHxWDOy/HasybgPWFwmvPx4Dm4hKK0xBo0omvA+WM8XJlluBbbN3bNRfu2y6KZx8cOnb8mUuYox1aDIH6tX4RPNgCsKWKuNKc07cSb9vwv5WMc4c7g/jGWW9K7Nc7rse9Ajmah6UviR/PdlFmVw3yWYWqjAoZQQC1WpggeXy0EQAra7fJwqjitkCf37thPpEqTtEV+qNLrgVO+9m9wcCOugWje2pYk8iSXMX25KS6llrMv+lXNTZS5/054q5vrUbTGiZFqaKjAULK+7iHJDPYvzyZZvIqFgGLK/ZzycGiE8Wj039KldlMbMq911lJK0PowKZoVZucUuqbEQGrmoFR1iGSJsaAd5/35x/vzc+6lnEoYr6Sdyy7x7augI0t1EnHg7vuWties/ETdob7GAfehlHaaxqZBoN9XPomOI5pTKnPGHGAcq6Fhfa4fcREuPeBuiS7As1HbcvwsP0vANWMUF4JI3ma3PfYG4pJ4uxI93f4Yclqd1aWth46J17yZHUY1Je9l9yyhfi58vOvlCQ0IDrsxK9rzEbgBtcIBn7l60J7uzQjQwxMHhZQwoEw8h+6XkGn8guqa+5lrVg6EQyTLv0l99WDZaFUWOikKgzxwERrhvxH3K6QfavqToxNY95+P5bLqUc/vQjMiX9+i9+IrNOTxIpx/xskE8yOujAOciXRHhwykET5VrHF3gzzjVdO4aeglwk3N5S8CuF4KBv1q2FGz3lqrwBgjLK4JhpB74zImX6cxHB1GXGzDVnyRtglO/dO4GUz8eDMkn8iX/1N6RYCqD91CXRWBFrC5Igo9rdDj4mnL1nzf3H38PvbqdADlL693Hdg6Qv306WGK6zglCZWiHk9LxF3sRz1marH+z6IRG8D/aHVlSBJQOnRbTeqa4fHg3ju2o595gpTiskgaPzXykNGfqt+b1/oKUotQIB7Qi66Aem0+iTXGMtcuC5AkNwHq+Jj9vdBXMh6J0L54KaeqC9mhVmvt3pQSqm0JznceRx2ngdAi5AWepq9K8UiustCbEO4HNMx3omujJBRzsWW36pcTBXF3Ecy0treLctLQg5PAlDPvggpL086kH3rABw5kwbCoMaNSUm+txR5vWeVqsnW9Ga5MaH8RbQGrN699TfpWhtL1CB9PL6scEuIF/3+LjDka50aMZElZu7YA3GZ8+863hvwlU+8nTETuDjCxI1zOL2XR05PvwGhmJgz0WtZ9sIdyX05lytb4AA1A4LRWbQrlMH7CrF9yQyhtAzSftR1JqjvOMWhkZSzoptIlVuW28YchKlpI98IuQ9eNaOINwCRFUIadq7gHzUc4vfH1P9APdn9Me6e24rxMU5C8/2m9em1NDszrENMzaQZfww1YUAfqUNkd6TBfST9I0YNs8K8yHLAHMRClJoAkWfomUh1xA2+HBcNh+H2NHFwdHhgHjnfaI62PcJIYvdKI70zm1bfTZnPkLIPtkVykz9qNLL6hb5thnzEIetpdOrc4UrStF9ShaBEZv9rA/e6/EwoJ7lPA981C8VsHkDebkQ/SZVNMiWhswGoOwKr+a8ycg4+/eIyeRtIIQ3ux6/Be+CoGSWQ2WFy1ZomcLaS2qiDiLeOkNzWWDbK6TO5tOzGPPyHGAIm6KKU7hHn/dQmrw0c47W78Qkg51wsVy0nMfaav06mamayktaveuZpvM3hX8rX3aMxudtcWgIA+wmqhgLSpqAkAMp7oGJxkY6bDcxOZtVbkEKsrV0yIwdLK+DoJ/Rz4oIBiBzh85fPcH29uHjFSnSdthOI6Ppa8hFRBNVGaWWhW0Y7eVgjMIVuZnYmqBA/qkSjtiMX4oqVdYjT10xUqILOvfMOr6jEd1pCl9uWm0fDL0uUVFpj/BLIHOCf+a/mz5MLTvDxeGfrWtdSzIFG4Xc2xM+svLA6p7P4lZrOCUcXzxM0wuvbaXrsQd++Ft81jalkijxVZQs4hWl/8XM/ceMUqJ2tyAf+McGeZ5DfOyQe/BGmNFsdQYePWJxNZ63MpaPaej2pQvacbBoKruKC5FW743v09Z5wD6VES1mX6AdZS6V+BNq3p/mAsDIAsHG3R8w4G3XWG/VR5IaJSWWGKBpUSs/wwNfr/3F41I+3WL63iNloSnLb+HrRYR53o88I90pcmSmTdtyc7EgfE5a7mEFxk1yLH97fnHNLroKZPYqF+QA6k7RD0BoV0/KJSNBoWucCm4GlHLFjBAgGqVssl65mCtZKzWdtW33dtvXLbmHtx23jE320TVJjVWHGZxx39vLmL85tzO72vji/rL2+v6xXli/zc2wl08pRBFbPioHJcSs5H/3u+t9Ypzuv2K4NrE6fdJpgn0mldowqXEcaI9R5N/7RbjhMeR4yGGduEyj3hQ/R8Id77eF3CfzNzQexnczrWZwRGmI6VEfKJNDsHEpN4ZRxlaRDJ07QJcVQW7osgt9peHJ3K8xK2CzPz7KQl50fEwS+As1lRZ+r5fmC/F2PesoTDZFEyI81ikojaK58F3+0J3nzIDiLKW75CxW5UJLVKblqT+1yMdtavBvAgPcbLosGMVQRsKmznvAsPIII8cKesNG11CucX0KYKpY6kpON5rLeCOS2R8FRJNuke1Fz8fyjASP/WH2zrJsmRLpbgB7JyIvl9gkoAhysvKKy8ziTkiMF5rbwtT9upanngYs+X1HDQg12ix4lU5RLPJVnaKUwPrG8Q7S6AtSuB2BvIH+UA1VVGXqOSwmWis66tstI8MvMptxp1Yl8Os+SaawRcIcrnZO2XeNpozzUJqQHAmQ+wyrtcuS82JrC0KjJdHhY0AGGptgZ4euY0DPAZzSmRKq7fKhp9tY7MQNsy6uv2ltG/r4UuEbIuVZX6GnXHduI/xobLqWuP4BMnwSEhr5xr+I/BJ7gI4b6LE/mtK6mVFcbZZdD9xLvHSJGqTfMHFVqVD85vz7m50c/+LTt17vLxqf/GpQKldsbpmuITXrQRy/f/th4nvQgfDskO7LhGMXjGNDmhshNOEqR/MKpz4mk9beqDWmxO4Xn3p/eA9bCFD2T/bnsuRSVF4Yvc34A8vEcrZaKdsabbeuSS+mPgL8nNEC/ixTAFlyvvn4BM36WTa5XOVW7fj6j7Sykbao7Fi1JlbvL3JefDiDS0L1XNKDE7aKyDiwCTGQQ5XikgJ0trcteiszX7bxqGsSTTVjNZudv3RnJoRbnTpjJSY/9Re0z00bWEWqvwO648PIsGFOHf7yPM9KPXXzLOJhuyzc8ZYkYSI37Qoohjqx4PXQMv1a0ULPh8XLi7SlEbkar4Y46zHBF0kpoeybw7tSnmhInI3SD20PUuKCSp3X3xDgsCd7iV5DCCyK4jT6EWnialkFve1TOBPe3AN6QdCuXroRNDdrrQEZqht1ARzNMxeSiNvhIUBMatNJGY+3igO3nEe4b07XzC/jqfIeGwVuQs9WiKZhAjhlUfLcyhk5KNsyQgVOTsaRYWUv8+uSO66p4/u08SWA6Ek4P4R5cUYIxwbRlmiJ7BVYD2bB4nuFalbZFM4gCv1X9kCrcUtht7eZKL777cIqRAMYCXynNFTlKzb4bho/OJsz9FPVGDUtvmszqOvabR5bDD5w59aaoabkY67hZS4UEmPxIybVix35BwFlTcC2IQXJAcmTHsSZn5T+W5t8vYuPWTD90yfXE9g9SUeTgvTSMVKRjUADTQg142dc3rQrzlwwp3CMQY6FvoAOIXYRVpQutyMnslJesEGJr+bnsGIP8TPR1QH8v8atinfPsuHNdEFOvUAUN4TpAtkh4PD4ufRThT8hTzKwqfv6y5WHIkWS2aTLh2yafqdp4D32MZJ9n7fOqpueiXAjmhN4TNjgBV/hwWrL46dF0FxFjLF11HxuiTRvlVW8cYuR6/pPoAZCavLjFa0VTkMrK1Mw9A/BQe/HgfiVM6ddnzsnuSQwoCq5efazN2mWTP+EbLG/8THGwC8EWyC+yAflFRsIyFHqSef0ynK26iJvnrRhJGdu/irGVdE950NhnuR50GAQVvIH1S2wR9ReNqv0YOmw01K4aOSd651qq0j+EXZdJNA/3Ol3QPgktnlFUcueuw+TPmAX6Mmflfi5RklRmq7tGdSYsCYU3b+uBGHhr6c1Q8/TWv27JTcmz+zl4WvmtsQxvWkqgjziLP+TDsB23HymAvP3IfDOm2eYfl1ILOUTpZlp93cwtLS0JwNWfOpyCGcTtAG+gbYKQS6auDLPbb49Bz4PgzmZ+sDqPmUaoF60sgKyvREnQG1e8FImPOkYVigTq2w0VsSyokaUPFvq2bFKQHYmBXq8T1F+F0KJBhzh8fmJ1TxF4MMkngR4QpI2kqWjsBVxI4iicx6POMtoqjeWAMpuuf6PcHBOh0LswODd9vAnk3e30Jr85rqLJ7iKq5OeE3Th6DCC5b2IfHBYQ2/8kkSdwRhXfWVLlvcZFBxxyDqtY6HKcd1Yario674l+7NG8yFUMSYtYI7NsRChew7s9KEgO0Rq/sxNjxZdDmFB2W+ujiRuRKHiBqFT3pKyUCkZP3G+yH6davljGGLE7imbD00jKpy+OzeMnLg2sUmKjSdB3WZ13QJ2UsMPGQY4J0rDKv+1j5MBRkQoEKLAJCUSlOo7rakJdhFmOQHctcxVUWE0xlB6m2G49iEHN/qlM2dQGnYVIFbg7tsLSkZRZ9aDSOt1sUfvBTijUkH9unu960D9PDgtNFXcGBmoHjc/g8uIKsGts13ZFR+n5Qb9eIyArL2D4wyL035V9BIHBuj5y4zLe59zbDrWQbvX3M+AjhgoM+LvsSEfsj8xIszQMyPYKSLembCNprA+gCHHCNX/2QzrgOmgmLMDs9QpKl06t7EEs/xzce2j8L+b1LnzFUfNuq4z/PTijyKRQcfCJl132IO1UzQQf3V34stVcXeWQSSTxubdNQGOakT7a8/Pe1paNQzXNQwiSWiF/HZxN2KQBQemNOD9GQvfz8WinY3hIf8sGmaVzHDfiKepRwz+qf+mcTpaqt10TieE4WnVdZD18vvsGAocX9DpEDO/z2w6HvTgSOD+CyNYB4JuX/Y9bcNzdOelT5I6XjO8t0lI12dmPoObjs0cUZU7T3M5wlSS3ICDGuhiHrrMgg6K6PuP3uFw6MKRwgWuTG3P56wGxoBVakwlp/Dip+mH5bOwDIxgRqH1ez1lYhV5HW48SXPskjytZ+m6Yedlhu+FLSqSGjuNz8PCFzhtgKVa5SE3y7+wjSAJl3bemg5IT4jfRjpT6hDL6wUVmqouHicmg8B+EmsubCUdAnl9oFHa0H8bBSgEn4IabkIVVf1ssEGxfZqDTTmQ67lrUZu5GjwPa6jxuesFCXeaTDE2v32cn+7FzeAacXHw+hesFSTCw7LMKzE9DzmCRKvccLQDNhOh5FLnuRnAoFrPueP5b9hNcNBgY2eUaPsNxbtrlUymCdDMVHxSamJRtluidfDDikl8bq5cydX4WV9uBlb0WlFrQ9ZCeVFO0UBQuGPWU4VVjrLnbSs+K1O/iPydLbFDJLyx/rrvlO2f5DvyppBsLCy3rW7/zZ4cO4MKk4KlpQ6wF0E8kfh1risByTL4ORmho7+M7889uFpk0+eb+xKrXDK9QE6H3Q2tRTRpaxOl+hhO9g2J3M6KdoPedL3gNMB4rtto8WVQgqkiwXtN1+q6Z421KOIEepflo/Ws3VhT+79oeDMmnAHTrBAavAHLkEMjbwon1Tn6z11VdgMriAu1bafxUOcS27TxbZP5zAhZpHLAWnfukAgPClGIYvnr8X0Rk+W3n5F0LmCQTwoJcr9qdXtRduZFrmFMncY+oV+VqFMQLgNIEGYrBYczSb/4+Jj0R7DtbQHUsErVsApaR/+pUF8jsT1RWpqv/i13qAwuAqj0BVk2D9UewVzCHP/7/TO055YeqZHZnQWLeCoRYKfx3IV+s6mG3XGpd0EVsMNIx0ITxtlDx8169EVZr7cC6DPFPenoi1W+yNqkjBSC1XctFYwEoz43Z9SHev4MKFd053K4Dk8i4IhBmISRA12NPfjw/C+JDwcNIWgwF5dAj2thOOgGqJXSW4lXQg2GH6QdMg/DdqoWPB+2hoOCHr9ee/UsbXlenuLjX3bpxPjizA2nE9flpr483y+P+LSEwIkobg48HCDUS2jSxSX0KKi9FMbejL58jHVOrub5+FXA/yCN4MDoXUc7OaXZ5P9ANfIt+FQIbt2kkx8m5w+IG8/46mqDp6NrCh/AbxbVqJ1gH10wGkYvCbcns6lf+KgDbeeTUx2eTFSm/tPDTXb7PcN5kd2RfgDIFnnt+LF2cWF3ITpmWiqay2xOx2INyFoKoBiArsPdF+csctU7NC70xYJvahDSb+XCzASk2JoV9j+GeFCI9V36VEJHuC8obZGYP+ujIRcUpBf33QG5KMRh5vgtS4W6M2UM+wPN10LHJsN6eKA40HK6DNIALo5rUW4jBIwNYxBcdAdzeLpxFdcYgHffwf3kmNxya8fNmuifgkrrLrh3vQJh1A1Aj9RB73j8bgr9OyFnKSUpNxNTUHgzGFQeeHTeuYitvBv57oYH4IOWIXoyWopLxfbOCKFQn6P0KlQQDIiX+9j+hZkqUPTw3d5q6mDG2inlbD5CyDEJ7yiYGYBjRFUbv4pqWyOMaWcMMhAV+PWUfXP29MIX3yLVeK9Fjh9dSvUNkAc939kJXlYGFOhr1Zg2q9HlYOaCDBjhKDsS5GVHu7t8jAcTX1Q10p0JKCMsEBRU0PiIU9DGKeg5w2lb0LAh8me91RfNepCN4Yt4mdSUpvOCZ0fPRWaaoL4FAk7V1qQ8hU/WpvFoLItPrXPoruluxkGK/FxNU/lYMvbYIGqMOh2A1cTytUkjaaaXfM/sawgmjt+gSOkxQNdJ12X03+RppbY0J+KYG75vmozpSXRWq+mNtFhAA1btTzrWEuLxCMTsLVtfcbIfQ4qJuppma+5MXMW51Vs2GmlYarznWU646Y4jMkmBcItuIzOVSIh5SgQ2q4a6OhUvR1cvb/eKBlAABpzzorQC6tVi9SeuafgbDO6MgGUE3pcYXhXkjtLizUFBm8v5Rachzrs7YaBUuqGmIMelgAAoa6/5Y0flVKZgSEzumBYQcsH/8jI9wVnRT9def1dxD41AnYPa/b+ChDv8Jor2A5ozalKlGR/P26m/FqRjwyGg4YogA5eSlvDJ+qxWpvU9e46fYZww6C8yMD3CTcK44Bl2VIlEXvgVBN9cJbbhdxWstKvFn9NsvL3syvz7ecKSZ0CM7PDEXWewnqmPTi6VpS90pw6ukKX5Gk7pkcLg/6fmzGznT4zBypyGH9OLMSi7Yibvdr+Hyna6lN0v0ceDRCgCD3VdxuhA+hOkqj+G9JhQnL/ivifK9Yj3ToYJ0sKAmXdk/tB6mXFD7mR3sitg++v13OFoXeEAkYu6FEHw5jAeehRshwvbXS3EnWFvArWbLQfLbubHAyJTNNk5iK5sDxfpT2QV55HYMjCKsKyJ9QoDc0rGpfNOV0vSu9d7l9F4aMzb1cekbj1oyRi/QCL9v2T/Sh+iCsmYfkLqgpbF5VvTsb7WBAaf5LIAW+hlnPQDoTUuc8/D00F8Z8v48GHkOJ95v0jyfagaBz3RRDP+9OCmivM9a3YLsUevrqCfXkjszYqGHfGEHSobs/rBbM3tfemes+kZns3eaUNzI7JQ3nGbkhpyzaruQ+WAWBsDSfcvDoV0tHIcteGfSc03+EvOCTn/ii4SbV+jXjUdPmxcMHu8Vdp1/DpOnpSVVJMYo/Ohbvb2eUYcrkYWusB12vGwHUmoxrp/Oo8EdEU3RxsNcxo9NOYydDsKwvgOGN39ZKEQ3cv9X1TJmdED21W8rspZkm4+p2l6V/wt4S0p6ey8EdCHSq/N6l6OPbL9x9Q79Dkeafd+5l5GdhMllzj8rbe4MCUED2vfHeZaKHnu1xOuEwoy415smICxEJxnQoqcW4f26RWM5guPWJxw/7M35L4k6kka6JnePfSLQRPtsNiTD963+eQ3rM9bUHQG87h4tfruJ0tJHTTGnHbFqAODmM+0AMg4vyIOhvQjmEufV2dKxIMDzy3v2iWn4SylXoe6IoYXyv+2or3jeN03WkV6FBjaafKEFLoI6krFUtXe6HpvTYpvnM/5/q2qSZcC0uHSPfoIXKy+ptOh2gIwNmUvcb9WFw4Y2tOnnLHBPpEZmWxUF/G9lZiURO+KeGvYIEDbATzV0njMRvK5gcVv8m45QSspUpqcHDTslLXpDPv3Qh/MBKULIqN4d39kgLn1xkurHjf7bu+fkq27xqU4DeeL6nTck+APf9DSGGeS0bTr1BmwoaEplECHVGXPViuNVpZoYSxDjspuo2uTRk8uoqG5fzISP/ltQOWdrzQMgXTIa1S/H2xaKcfIGvEfdDYpY/Mn1pp5kEHhKYTsb//Fb4t0U/CU68QjcJMrnLwfcN1ghIZl7wlOpv8+W7eN7jy/1yJI1cnjFtCqNyfoDHSGMiC3Rj/3budR2HBitrHGwElQFw7zmdgnb/L4tJIIhShCLFg+kpumXqbknokmYZB0ijXgYOEcYKgVLuVJrF+6kBGWDtG/QnV1jyw0Nyk/Mio69A8UGQSbo4mIJWpI+1YNeomD2G8GBSOm8/x9QJHR5wTCE5e1rWymWH9u3FfJGiymrHp70UuZDPkue4F2mWJmL/OaXgqlb+4b6bfEy7oiPndWUue5ebp/1/VkcdJmTiqPYwxvHrhf/WHGMPxappk6LFLCXwq70T0JR2iv1mN/CvhWJCkZPU3dhUxT+DBfNaEOEKdjf0e9/maGJroHAW7sklLVzS1Fi/uVzJJ2CXpWtIZyTZsVN85SBUppks3bzJVRMEhVlwv3e2xqamKoTSudUEzqMcHhTnsLI1200J3R/BSoArFWDxmMy7Z3YdH5KCRPFzKeiiBJgHU6a/ZucwsJQUT6UmiFpiPreT4Lx6dYkcBxx7diQ2Dii4h5QA6l3HqN/5qf0ZHZgjHte/aPfyqtS2wG8AZPy2auFqG0HgBnqd2/FX583SnpvHBKow7erRzE6EF4oc5JrIV2POzH8jWvEiTimKpoXsyS58Q9mCeXlVUorCeN1qy1EYZ5Ep/Fjx4HwhxT1qFWlEMxRsPXO2tRTGDvkfQ0zf1SBuw1Il6CVpdfEi9UDqTfKOUKaX2vZFKRy44WdMcuMmbeC3UkgH4/kJhH2yB6ohHiNwV0u+fjhpmmTH0xMwsHgR6fUo08koEwYSRGufOapa1djM7I3Ny3g82BWtMDmdO6cil/C5uh+1ihcHXnn20amOeAzXWnzMVqIWdfY6oDZbISY/Pkuo1nyIp7d1SeYapoYgDQvYtuaP6uTuEh39BDSTLDDSjqOgnB5tpk8KL7RzvjSJlDuPOt6CRi1YpT+WTTUU/jx8iEbAnFBBKlyJ3GDh2CwzzIFPEVEbxvzUOQSQUL+Q9YluInVCE5z2fXRs4axPgJkRpzfEBzsHCM+Y6meWVN+P3Qn8ion/M8xNV6GPWRprdXOtVaS2i9J8JAPXap7NtF5xdz+zVRLqz3uFlHjxAKjRRhPlc92c1CPX8G6XnP874mzmzhF1VYY/MRrqCfBOioL/ZXGWmYoR4DRZvwZ4djPfjLl5iiHo3gGfEmQHbs2SeQCGuQXbkCdmOxzSZo4Skv8Qw3gIX7Kkvj+fc9rO/IruYPKM5yj4I+ElBLgy5o/s1fFZsWO8pUqMJlEVSXvd/Wdo+Q5XHYfP2bWlayBIuswxPT0oFMU+lEf2/+4T8wMsEbhZ5hewheBMdaVzdckUghVcZaiBIaHZr25sgD1Zw6RaR0svitXLIQaGiqeAFd60zG0fCyC8wQLuhICwvcI5VhmIYt5kOVO8BtaZSlD1uzqY15wRsW70VdMDmPyAJ3boBJwbBwlh4TGilOMqFZaPYvPM+BWZD6YLYRe/qvEGEssUj3p012saepSqynQ462LnqQfPiftFFWfQad7C2dC7nQCdxov2wf5GxXymuQ931TGB6vmZCishqSti//5coajWBYddleJkwt1snaZWZnuHGp4YGReMepOoVJjUlFZhKf7m42vl1N+uKxT8T5hFOxpeEvh10JuCf6Q2ON1MYA/o1cwW8qUKHLgvhWe7+18GZrYfIu09LZ7oBMSIr96NiUfhpqFL8e66jQqNvUs6e7v9JheAPqrmy9UROroPB/9zgH39QhtEAtb1H+sv74VK96PUOy6ToXmaFvPR3fIYlkIR1C8TAVFlTS5IyjTqxG3BG11WD47CVBf/gAkBFqyMvHmgieMqepazyk4VKzhdxoF1ziAY+B6O7mtn8eKgaD0aH6iRIOaxZTxaNjJlh4gcyV24Nes5FOA18gVF5YMokhnRSuUbGC6s5K7h+GcCuLUJReHkUpVEXwPLsC22UIKBcbQKF6ij1PKU4unwWQ1U07qy7OwYp6w03KVAb9ffiRaTWQ5M4FYU1k/SMhvwbewS52p9zvX0QE4mppgqL9DDyu+HZWkUF53u4zkkJrRVrFa1bkZGH307m2ooSlfklc6ouHBgxQeH3Khop69dcOYSDXEjmGv6qvDgJymVZG7kLAraumcVtHaP9kC/O6yqe7htMF+p+ulIZHT61ylJ7FA7m9uruN4QyRd9O2NoCdGcJO/WSE6UHYVw+uQN6+5+fX3REBFhHkZ60rCXEScjqBJZXe8yGg/OquRlOvAclMEASjBljLqdDGMpwM7ZSZRtEuAI76Tyxyeyzyiqs1NLZqjM9T1ssgaXmJ30fhYwKiSYk2hR4GNWuQjqsy8M6kSjaXoRtvBY+95n5bKzepEKdvHbIEML4pvBIXR9CCKERCtdX+u+lgqpu1hydQ2tF6sBwE3Yx+1PVi2pjczJI897bh1FPAEDMk9Kw64NHUZeiNRvVqOtpS3fVWReBFEo+T+/5HTjw2AgZ7mbtbEEiw2HMK5TPB27nmJOcK2imstquYwtWeBxXyWPZqeIZI9TtUf956lc+PtKHWYoafBOB8IpCn5YBFFsfP7PPkme8jLzXY1LX/WEb8vargwLXiLcpOh/hIzWcw7LsskNqRhRgCiKhFxR/RSAoaBJWh8OANP9WVuG+N+lEQapBNnCkYmIAcb5O/sSxK0U+k8WnHuWWHNbnKOoNryo1MhtfuPaoSCZQ3JEMM8g3Zu/CGJeMxCYWBI4VsMvz8oxVZvc9+nLh1ZATZg0TeQD4aSHMfrHRqPVwna2YE9aXgN0myu4nLHA6Dhf9vtGy5fTFqGwfC6VoVtKeykPIY/GphOhA+7asCwLTloFeNtnblkZP2CuEf81bxEUGUTdYliVteZ5auLixuMdFCo2jdLcJ5DwbxtZHFeSnxO6/qJhcIgTomTYCKUz76UuAl5q9zpnXt2yT9/Y1vW7jwlgXM/60T05ZuumPgoytlge4gQEcJ9BN9Ju1NXX+s5xw5mXzsR/TiGn8KyEgETpBZ7iHzP0vwrT2qFMPLHMVhk3cPxz3UkK7iDmBckXRBDf7L/L1X4mOvh7FiMJaxl+zUhLrGiBQk2dzh0cWWIy8/3MZvBUShBgh6KGUyrx363a0qLLecDrGRReXlF4XPJxsgx3dTFuRzgDAOe8zpEn5+bGNvsAHH4pg+RLjMOBSpHHm4vXtkpg6XsnUYvq7oFS5t5Y7Pb3ohwyReUGC2zoY8LVfm2h35eTfIiG5ogD/0e9ReOzQH0M3zouwY7HQBJ1/ufb7B8gxFWTdL6PcSTzIR0HZX62Il+OfxBU57Kql8TD1ycRDplKOn396Hl0haUrT294Cj8YnB+8lYNcHBceRnSo08sCbDvOE7RQYDKkF0EVkcZBu2VlDGvvRb+vGTI7p7F7PAnBLYR/YkCxog+CL1T2XbMTfPTlEmgsPuHif3KPTxh26BeCk2n0uBzyHED8ohqqxY9N1McR0GL87ZB0pEPgTDO9+/FGxEWQKUQjyaRL+YzuQqKaU3pKBmPU6MtN8sLLhzBqIRqN9wvr1llHYbP3F5t9ukQH41AEBibbiq2xkw1kV5/S9uYxGK9MBzo6hrbNXKLJTu1dnBcruB/MG5uT9MHXOecxHL11lUnEHbmWtxS4TW/BV2vzKKH4K38fAo0jkI/eejLTRz758OdEuajZvtyOCTaysb2VZeLJ5EMSJzfTNQnaHE9AOHTQbDhvrm2v6U21Yxp1GO6GCWAHlA6KnnxzrYPsi/5FTfLyzf5wCykmM/ZbeY6YEGBqdVnfpER60Tfzt4BtfQywoPKtMNR+Gbfn/E/+embOT0uOrVHZy5+jgFlBVBNs+jOV5xBHuTz36pm0aSJ+5QPCu6ckDA8+OVnG7V8mL1OM+3T79Z+yNWzZ+1ODasxuoI4mw66S6KFOJk7nBiaHGxj4xIpfWg3mILG2Ue+rhyXJ7xPnhR8/QrTTvb8smfVWtA1PGRfoM86ZUZH3/7XCBe2v35PdLo0AiupxVNNaa6h64+dampnqcGlHV9WxrJiKvP079HRjuXpBzhpv8oYTjQnhZi91z3nlUvvwd65a8hcQD6ZHyPZL9kvGt5Kjfuwn/N62bD78rFVqF+P57vI/FCJPMxPaDgwsj0aqDptTtamTVi/H6Rw5a0uhSGs/tak3biu0V+gBo18tfUQD6wHDqwXmxPbiwjPX30NjY2A6u+V2xCz67YxYXHuVSUDIjISCDfx1ok5YIHwCyP2WUhGZXAJGsBcnu4FbYKSiHkfpTVvCvYnLFKQyO6R8jC+9FkUEyztxPCLr1Iclef1kOhU}
在这种情况下如何抓取痧?
最佳答案
从技术上讲,对站点进行逆向工程应该是可能的,但这在这里绝非易事,需要弄清楚有效载荷是如何被 JavaScript 解码的。提示:从查看 payload
开始JavaScript 文件中的引用。
否则,Splash 可能不太适合,因为每个请求都必须向下滚动,直到到达所需的页面。当您到达后面的页面时,获取目标页面所需的数量或请求和时间将显着增加。
因此,如果逆向工程不在考虑之列,Selenium 或类似的替代品将是唯一的出路。
关于python - 当 xhr 响应不可读时如何抓取无限滚动页面?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63317278/
我正在尝试将抓取的 xml 输出写入 json。由于项目不可序列化,抓取失败。 从这个问题来看,它建议您需要构建一个管道,未提供的答案超出了问题 SO scrapy serializer 的范围。 所
有没有一种方法可以通过重载函数来区分参数是在编译时可评估还是仅在运行时可评估? 假设我有以下功能: std::string lookup(int x) { return table::va
我正在使用 MVVM 模式编写一个应用程序。我通过将 View 的 DataContext 属性设置为 ViewModel 的实例来向 View 提供数据。一般来说,我只是从那里使用 Binding
对于一个项目,我正在使用带有简单 python module 的传感器收集多个红外命令。 . 我收到如下字节字符串: commando1= b'7g4770CQfwCTVT9bQDAzVEBMagGR
我有一个计算方法,可以在用户使用 Cartridge 作为我的商店框架结账时计算税费。 税 = 税 * 小数(str(settings.SHOP_DEFAULT_TAX_RATE)) 计算工作正常。然
我正在用 pygame 制作一个绘图程序,我想在其中为用户提供一个选项来保存程序的确切状态,然后在稍后重新加载它。在这一点上,我保存了我的全局字典的副本,然后遍历, pickle 每个对象。 pyga
在 C++11 之前,我可以使用它来使类不可复制: private: MyClass(const MyClass&); MyClass& operator=(const MyClass&); 使用 C
大家好 :) 我在我的 VC++ 项目中使用 1.5.4-all (2014-10-22)(适用于 x86 平台的 Microsoft Visual C++ 编译器 18.00.21005.1)。 我
我有一个 python 文件:analysis.py: def svm_analyze_AHE(file_name): # obtain abp file testdata = pd.
这个问题已经有答案了: How to serialize SqlAlchemy result to JSON? (37 个回答) 已关闭 4 年前。 我正在编写小查询来从 mysql 获取数据数据库,
我是 Python 初学者,我在 JSON 方面遇到了一些问题。在我正在使用的教程中有两个函数: def read_json(filename): data = [] if os.pa
我目前正在开发一个针对 iPad 的基于 HTML5 Canvas/JavaScript 的小型绘图应用程序。它在 Safari 中运行。到目前为止,除了一件事之外,一切都进展顺利。 如果我旋转设备,
以下代码无法使用 Visual Studio 2013 编译: #include struct X { X() = default; X(const X&) = delete;
嗨,我制作了一个文本分类分类器,我在其中使用了它,它返回一个数组,我想返回 jsonresponse,但最后一行代码给我错误 'array(['cycling'], dtype =object) 不可
我使用 Flask 和 Flask-Login 进行用户身份验证。 Flask-Sqlalchemy 将这些模型存储在 sqlite 数据库中: ROLE_USER = 0 ROLE_ADMIN =
如果您尝试发送不可 JSON 序列化的对象(列表、字典、整数等以外的任何对象),您会收到以下错误消息: "errorMessage": "Object of type set is not JSON
我在尝试 move std::vector 时遇到崩溃其中 T显然是不可 move 的(没有定义 move 构造函数/赋值运算符,它包含内部指针) 但为什么 vector 的 move 函数要调用 T
我尝试在用户成功登录后将 token 返回给他们,但不断收到以下错误: 类型错误:“字节”类型的对象不可 JSON 序列化 我该如何解决这个问题?这是我到目前为止的代码: if user:
我是一名优秀的程序员,十分优秀!