- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在 kubernetes 上运行 Spark 作业,并且由于数据量较大,我经常出现“Executor lost”,并且 executor 被杀死,作业失败。我已经做了 kubectl logs -f
在所有运行的 executor pod 上,但我从来没有看到任何异常被抛出(我希望像 OutOfMemoryError
之类的东西)。 Pod 只是突然停止计算,然后直接被移除,因此它们甚至不会停留在 Error
中。状态以便能够挖掘和排除故障。他们只是消失了。
我应该如何解决这个问题?在我看来,Kubernetes 本身会杀死 Pod,因为我认为它们超出了某些边界,但据我所知,Pod 应该在 Evicted
中。状态(或者他们不应该?)
这似乎与内存使用有关,因为当我打开时spark.executor.memory
我的工作运行到完成(但随后执行者少得多,导致速度低得多)。
使用 local[*]
运行作业时作为主机,即使内存设置低得多,它也能运行完成。
跟进 1
我开始工作时只有一个执行者并做了一个 kubectl logs -f
在 executor pod 上,并观察驱动程序的输出(在客户端模式下运行)。首先,驱动程序上有“Executor lost”消息,然后 executor pod 就退出了,没有任何异常或错误消息。
后续2
当 executor 死亡时,驱动程序的日志如下所示:
20/08/18 10:36:40 INFO TaskSchedulerImpl: Removed TaskSet 15.0, whose tasks have all completed, from pool
20/08/18 10:36:40 INFO TaskSetManager: Starting task 3.0 in stage 18.0 (TID 1554, 10.244.1.64, executor 1, partition 3, NODE_LOCAL, 7717 bytes)
20/08/18 10:36:40 INFO DAGScheduler: ShuffleMapStage 15 (parquet at DataTasks.scala:208) finished in 5.913 s
20/08/18 10:36:40 INFO DAGScheduler: looking for newly runnable stages
20/08/18 10:36:40 INFO DAGScheduler: running: Set(ShuffleMapStage 18)
20/08/18 10:36:40 INFO DAGScheduler: waiting: Set(ShuffleMapStage 20, ShuffleMapStage 21, ResultStage 22)
20/08/18 10:36:40 INFO DAGScheduler: failed: Set()
20/08/18 10:36:40 INFO BlockManagerInfo: Added broadcast_11_piece0 in memory on 10.244.1.64:43809 (size: 159.0 KiB, free: 2.2 GiB)
20/08/18 10:36:40 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 1 to 10.93.111.35:20221
20/08/18 10:36:41 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 3 to 10.93.111.35:20221
20/08/18 10:36:49 INFO KubernetesClusterSchedulerBackend$KubernetesDriverEndpoint: Disabling executor 1.
20/08/18 10:36:49 INFO DAGScheduler: Executor lost: 1 (epoch 12)
20/08/18 10:36:49 INFO BlockManagerMasterEndpoint: Trying to remove executor 1 from BlockManagerMaster.
20/08/18 10:36:49 INFO BlockManagerMasterEndpoint: Removing block manager BlockManagerId(1, 10.244.1.64, 43809, None)
20/08/18 10:36:49 INFO BlockManagerMaster: Removed 1 successfully in removeExecutor
20/08/18 10:36:49 INFO DAGScheduler: Shuffle files lost for executor: 1 (epoch 12)
在执行器上,它看起来像这样:
20/08/18 10:36:40 INFO Executor: Running task 3.0 in stage 18.0 (TID 1554)
20/08/18 10:36:40 INFO TorrentBroadcast: Started reading broadcast variable 11 with 1 pieces (estimated total size 4.0 MiB)
20/08/18 10:36:40 INFO MemoryStore: Block broadcast_11_piece0 stored as bytes in memory (estimated size 159.0 KiB, free 2.2 GiB)
20/08/18 10:36:40 INFO TorrentBroadcast: Reading broadcast variable 11 took 7 ms
20/08/18 10:36:40 INFO MemoryStore: Block broadcast_11 stored as values in memory (estimated size 457.3 KiB, free 2.2 GiB)
20/08/18 10:36:40 INFO MapOutputTrackerWorker: Don't have map outputs for shuffle 1, fetching them
20/08/18 10:36:40 INFO MapOutputTrackerWorker: Doing the fetch; tracker endpoint = NettyRpcEndpointRef(spark://MapOutputTracker@node01.maas:34271)
20/08/18 10:36:40 INFO MapOutputTrackerWorker: Got the output locations
20/08/18 10:36:40 INFO ShuffleBlockFetcherIterator: Getting 30 (142.3 MiB) non-empty blocks including 30 (142.3 MiB) local and 0 (0.0 B) host-local and 0 (0.0 B) remote blocks
20/08/18 10:36:40 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 3.082897 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 5.132359 ms
20/08/18 10:36:41 INFO MapOutputTrackerWorker: Don't have map outputs for shuffle 3, fetching them
20/08/18 10:36:41 INFO MapOutputTrackerWorker: Doing the fetch; tracker endpoint = NettyRpcEndpointRef(spark://MapOutputTracker@node01.maas:34271)
20/08/18 10:36:41 INFO MapOutputTrackerWorker: Got the output locations
20/08/18 10:36:41 INFO ShuffleBlockFetcherIterator: Getting 0 (0.0 B) non-empty blocks including 0 (0.0 B) local and 0 (0.0 B) host-local and 0 (0.0 B) remote blocks
20/08/18 10:36:41 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 6.770762 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 3.150645 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 2.81799 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 2.989827 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 3.024777 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 4.32011 ms
然后,执行器退出。
DEBUG
在 executor 退出之前,我注意到了一些有趣的事情:
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@4ef2dc4a
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 64.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@4ef2dc4a
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 128.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 64.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 256.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 128.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 512.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 256.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 1024.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 512.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 2.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 1024.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 4.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 2.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 acquired 8.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 release 4.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 acquired 16.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 release 8.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 acquired 32.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 release 16.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:29 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:30 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:30 DEBUG TaskMemoryManager: Task 1155 release 32.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:34 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:34 DEBUG TaskMemoryManager: Task 1155 acquired 128.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:34 DEBUG TaskMemoryManager: Task 1155 release 64.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:36 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:36 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:37 DEBUG TaskMemoryManager: Task 1155 acquired 256.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:37 DEBUG TaskMemoryManager: Task 1155 release 128.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:37 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:38 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:38 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:39 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:39 DEBUG TaskMemoryManager: Task 1155 acquired 512.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
我通过
spark.executor.memory
给了 executor 4GB 内存,这些分配加起来为 1344MB。使用 4GB 内存和默认内存拆分设置,40% 为 1400MB。
UnsafeExternalSorter
的内存量吗?需要?
OOMKilled
.看来
spark.executor.memory
设置 pod 的请求内存和 Spark 执行器中的内存配置。
最佳答案
后续行动 4 就是答案。我用 kubectl get pod -w
再次运行了这项工作我看到 executor pod 得到 OOMKilled
.我现在正在运行 spark.kubernetes.memoryOverheadFactor=0.5
和 spark.memory.fraction=0.2
, 调整 spark.executor.memory
如此之高以至于每个节点几乎没有启动一个执行程序,我设置了 spark.executor.cores
到每个节点的核心数减 1。这样,它就会运行。
我还调整了我的算法,因为它有一个很大的分区偏斜,并且必须做一些不容易并行化的计算,这导致了很多 shuffle。
关于apache-spark - Kubernetes 上的 Spark : Executor pods silently get killed,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63466193/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!