gpt4 book ai didi

tensorflow - 在 tensorflow 训练管道中禁用增强

转载 作者:行者123 更新时间:2023-12-04 09:02:54 34 4
gpt4 key购买 nike

我用谷歌搜索了一下,但我只发现了有关启用数据增强的问题。
我关注了这个 tutorial但使用我自己的数据集(只有一个类)。我已经对我的数据集进行了数据增强,所以我从 pipeline.config 中删除了负责的行。
现在我的管道看起来像这样

model {
ssd {
num_classes: 1
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}
feature_extractor {
type: "ssd_resnet50_v1_fpn_keras"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 0.00039999998989515007
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.029999999329447746
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
}
}
override_base_feature_extractor_hyperparams: true
fpn {
min_level: 3
max_level: 7
}
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 0.00039999998989515007
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
}
}
depth: 256
num_layers_before_predictor: 4
kernel_size: 3
class_prediction_bias_init: -4.599999904632568
}
}
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 9.99999993922529e-09
iou_threshold: 0.6000000238418579
max_detections_per_class: 100
max_total_detections: 100
use_static_shapes: false
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.25
}
}
classification_weight: 1.0
localization_weight: 1.0
}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
}
}
train_config {
batch_size: 1

sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.03999999910593033
total_steps: 25000
warmup_learning_rate: 0.013333000242710114
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.8999999761581421
}
use_moving_average: false
}
fine_tune_checkpoint: "/home/sally/work/training/TensorFlow/workspace/pre-trained-models/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/checkpoint/ckpt-0"
num_steps: 25000
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
fine_tune_checkpoint_type: "detection"
use_bfloat16: false
fine_tune_checkpoint_version: V2
}
train_input_reader {
label_map_path: "/home/sally/work/training/TensorFlow/workspace/annotations/label_map.pbtxt"
tf_record_input_reader {
input_path: "/home/sally/work/training/TensorFlow/workspace/annotations/train.record"
}
}
eval_config {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader {
label_map_path: "/home/sally/work/training/TensorFlow/workspace/annotations/label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "/home/sally/work/training/TensorFlow/workspace/annotations/test.record"
}
}
我开始了训练,但是使用 tensorboard 我可以看到训练图像非常非常扭曲。
enter image description here
作为引用,正常图像看起来像这样
enter image description here
enter image description here
如您所见,我尝试检测 Kellogs 盒。数据集是使用 blender 生成的(汽水 jar 和围栏有某种诱饵对象,并且能够部分覆盖盒子)
现在我的问题是:如何在对象检测 api 中禁用任何类型的数据增强?
由于在训练过程中使用了这些扭曲的图像,因此 map 非常低。

最佳答案

这是图像标准化的问题。它不会影响您的训练。
但是,如果您希望图像在 tensorboard 中正确显示,则将它们在 (0, 1) 之间标准化。查询 this link对于一些可能的变化。
注意:已报告 (-1, 1) 之间的标准化会产生相同的问题。

关于tensorflow - 在 tensorflow 训练管道中禁用增强,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63523996/

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com