- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在 Pytorch 上使用 Mc Dropout 实现贝叶斯 CNN,主要思想是通过在测试时应用 dropout 并运行多次前向传递,您可以获得来自各种不同模型的预测。我需要获得不确定性,有没有人知道我该怎么做,请
这就是我定义我的 CNN 的方式
'''
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.dropout = nn.Dropout(p=0.3)
nn.init.xavier_uniform_(self.conv1.weight)
nn.init.constant_(self.conv1.bias, 0.0)
nn.init.xavier_uniform_(self.conv2.weight)
nn.init.constant_(self.conv2.bias, 0.0)
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.constant_(self.fc1.bias, 0.0)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.constant_(self.fc2.bias, 0.0)
nn.init.xavier_uniform_(self.fc3.weight)
nn.init.constant_(self.fc3.bias, 0.0)
def forward(self, x):
x = self.pool(F.relu(self.dropout(self.conv1(x)))) # recommended to add the relu
x = self.pool(F.relu(self.dropout(self.conv2(x)))) # recommended to add the relu
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(self.dropout(x)))
x = self.fc3(self.dropout(x)) # no activation function needed for the last layer
return x
model = Net().to(device)
train_accuracies=np.zeros(num_epochs)
test_accuracies=np.zeros(num_epochs)
dataiter = iter(trainloader)
images, labels = dataiter.next()
#initializing variables
loss_acc = []
class_acc_mcdo = []
start_train = True
#Defining the Loss Function and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
def train():
loss_vals = []
acc_vals = []
for epoch in range(num_epochs): # loop over the dataset multiple times
n_correct = 0 # initialize number of correct predictions
acc = 0 # initialize accuracy of each epoch
somme = 0 # initialize somme of losses of each epoch
epoch_loss = []
for i, (images, labels) in enumerate(trainloader):
# origin shape: [4, 3, 32, 32] = 4, 3, 1024
# input_layer: 3 input channels, 6 output channels, 5 kernel size
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model.train()(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad() # zero the parameter gradients
loss.backward()
epoch_loss.append(loss.item()) # add the loss to epoch_loss list
optimizer.step()
# max returns (value ,index)
_, predicted = torch.max(outputs, 1)
n_correct += (predicted == labels).sum().item()
# print statistics
if (i + 1) % 2000 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{n_total_steps}], Loss:
{loss.item():.4f}')
somme = (sum(epoch_loss)) / len(epoch_loss)
loss_vals.append(somme) # add the epoch's loss to loss_vals
print("Loss = {}".format(somme))
acc = 100 * n_correct / len(trainset)
acc_vals.append(acc) # add the epoch's Accuracy to acc_vals
print("Accuracy = {}".format(acc))
# SAVE
PATH = './cnn.pth'
torch.save(model.state_dict(), PATH)
loss_acc.append(loss_vals)
loss_acc.append(acc_vals)
return loss_acc
这是 mc dropout 的代码
def enable_dropout(model):
""" Function to enable the dropout layers during test-time """
for m in model.modules():
if m.__class__.__name__.startswith('Dropout'):
m.train()
def test():
# set non-dropout layers to eval mode
model.eval()
# set dropout layers to train mode
enable_dropout(model)
test_loss = 0
correct = 0
n_samples = 0
n_class_correct = [0 for i in range(10)]
n_class_samples = [0 for i in range(10)]
T = 100
for images, labels in testloader:
images = images.to(device)
labels = labels.to(device)
with torch.no_grad():
output_list = []
# getting outputs for T forward passes
for i in range(T):
output_list.append(torch.unsqueeze(model(images), 0))
# calculating mean
output_mean = torch.cat(output_list, 0).mean(0)
test_loss += F.nll_loss(F.log_softmax(output_mean, dim=1), labels,
reduction='sum').data # sum up batch loss
_, predicted = torch.max(output_mean, 1) # get the index of the max log-probability
correct += (predicted == labels).sum().item() # sum up correct predictions
n_samples += labels.size(0)
for i in range(batch_size):
label = labels[i]
predi = predicted[i]
if (label == predi):
n_class_correct[label] += 1
n_class_samples[label] += 1
test_loss /= len(testloader.dataset)
# PRINT TO HTML PAGE
print('\n Average loss: {:.4f}, Accuracy: ({:.3f}%)\n'.format(
test_loss,
100. * correct / n_samples))
# Accuracy for each class
acc_classes = []
for i in range(10):
acc = 100.0 * n_class_correct[i] / n_class_samples[i]
print(f'Accuracy of {classes[i]}: {acc} %')
acc_classes.append(acc)
class_acc_mcdo.extend(acc_classes)
print('Finished Testing')
最佳答案
当启用 dropout 时,您可以在测试时(即使用测试或验证数据)计算不同随机前向传递的统计数据,例如样本均值或样本方差。这些统计数据可用于表示不确定性。例如,您可以根据样本均值计算熵,它是不确定性的度量。
关于machine-learning - 如何使用 PyTorch 计算 Monte Carlo Dropout 神经网络的不确定性?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63551362/
我在网上搜索但没有找到任何合适的文章解释如何使用 javascript 使用 WCF 服务,尤其是 WebScriptEndpoint。 任何人都可以对此给出任何指导吗? 谢谢 最佳答案 这是一篇关于
我正在编写一个将运行 Linux 命令的 C 程序,例如: cat/etc/passwd | grep 列表 |剪切-c 1-5 我没有任何结果 *这里 parent 等待第一个 child (chi
所以我正在尝试处理文件上传,然后将该文件作为二进制文件存储到数据库中。在我存储它之后,我尝试在给定的 URL 上提供文件。我似乎找不到适合这里的方法。我需要使用数据库,因为我使用 Google 应用引
我正在尝试制作一个宏,将下面的公式添加到单元格中,然后将其拖到整个列中并在 H 列中复制相同的公式 我想在 F 和 H 列中输入公式的数据 Range("F1").formula = "=IF(ISE
问题类似于this one ,但我想使用 OperatorPrecedenceParser 解析带有函数应用程序的表达式在 FParsec . 这是我的 AST: type Expression =
我想通过使用 sequelize 和 node.js 将这个查询更改为代码取决于在哪里 select COUNT(gender) as genderCount from customers where
我正在使用GNU bash,版本5.0.3(1)-发行版(x86_64-pc-linux-gnu),我想知道为什么简单的赋值语句会出现语法错误: #/bin/bash var1=/tmp
这里,为什么我的代码在 IE 中不起作用。我的代码适用于所有浏览器。没有问题。但是当我在 IE 上运行我的项目时,它发现错误。 而且我的 jquery 类和 insertadjacentHTMl 也不
我正在尝试更改标签的innerHTML。我无权访问该表单,因此无法编辑 HTML。标签具有的唯一标识符是“for”属性。 这是输入和标签的结构:
我有一个页面,我可以在其中返回用户帖子,可以使用一些 jquery 代码对这些帖子进行即时评论,在发布新评论后,我在帖子下插入新评论以及删除 按钮。问题是 Delete 按钮在新插入的元素上不起作用,
我有一个大约有 20 列的“管道分隔”文件。我只想使用 sha1sum 散列第一列,它是一个数字,如帐号,并按原样返回其余列。 使用 awk 或 sed 执行此操作的最佳方法是什么? Accounti
我需要将以下内容插入到我的表中...我的用户表有五列 id、用户名、密码、名称、条目。 (我还没有提交任何东西到条目中,我稍后会使用 php 来做)但由于某种原因我不断收到这个错误:#1054 - U
所以我试图有一个输入字段,我可以在其中输入任何字符,但然后将输入的值小写,删除任何非字母数字字符,留下“。”而不是空格。 例如,如果我输入: 地球的 70% 是水,-!*#$^^ & 30% 土地 输
我正在尝试做一些我认为非常简单的事情,但出于某种原因我没有得到想要的结果?我是 javascript 的新手,但对 java 有经验,所以我相信我没有使用某种正确的规则。 这是一个获取输入值、检查选择
我想使用 angularjs 从 mysql 数据库加载数据。 这就是应用程序的工作原理;用户登录,他们的用户名存储在 cookie 中。该用户名显示在主页上 我想获取这个值并通过 angularjs
我正在使用 autoLayout,我想在 UITableViewCell 上放置一个 UIlabel,它应该始终位于单元格的右侧和右侧的中心。 这就是我想要实现的目标 所以在这里你可以看到我正在谈论的
我需要与 MySql 等效的 elasticsearch 查询。我的 sql 查询: SELECT DISTINCT t.product_id AS id FROM tbl_sup_price t
我正在实现代码以使用 JSON。 func setup() { if let flickrURL = NSURL(string: "https://api.flickr.com/
我尝试使用for循环声明变量,然后测试cols和rols是否相同。如果是,它将运行递归函数。但是,我在 javascript 中执行 do 时遇到问题。有人可以帮忙吗? 现在,在比较 col.1 和
我举了一个我正在处理的问题的简短示例。 HTML代码: 1 2 3 CSS 代码: .BB a:hover{ color: #000; } .BB > li:after {
我是一名优秀的程序员,十分优秀!