gpt4 book ai didi

R:将 mutate 调用从处理三个二进制变量调整为 n 个二进制变量

转载 作者:行者123 更新时间:2023-12-04 08:53:32 27 4
gpt4 key购买 nike

我有一个数据框,其中包含与时间段 1 相关的 3 个二进制变量和与时间段 2 相关的三个相应变量。

df <- data.frame("user" = c("a","b","c","d","e"), "item_1_time_1" = c(1,0,0,0,NA), "item_2_time_1" = c(1,1,1,0,NA), "item_3_time_1" = c(0,0,1,0,0), "item_1_time_2" = c(1,0,0,0,NA), "item_2_time_2" = c(1,0,0,0,NA), "item_3_time_2" = c(0,0,1,0,1))

df

user item_1_time_1 item_2_time_1 item_3_time_1 item_1_time_2 item_2_time_2 item_3_time_2
1 a 1 1 0 1 1 0
2 b 0 1 0 0 0 0
3 c 0 1 1 0 0 1
4 d 0 0 1 0 0 0
5 e NA NA 0 NA NA 1
我想知道观察是否有 1对于给定的 item在第 1 期但不在第 2 期。此外,我想知道观察是否有任何实例,其中项目是 1在第 1 期而不是第 2 期。
所以理想的输出看起来像
df2 <- data.frame("user" = c("a","b","c","d","e"), "item_1_time_1" = c(1,0,0,0,NA), "item_2_time_1" = c(1,1,1,0,NA), "item_3_time_1" = c(0,0,1,1,0), "item_1_time_2" = c(1,0,0,0,NA), "item_2_time_2" = c(1,0,0,0,NA), "item_3_time_2" = c(0,0,1,0,1), "item_1_check" = c(1,1,1,1,1), "item_2_check" = c(1,0,0,1,1), "item_3_check" = c(1,1,1,0,1), item_check = c(1,0,0,0,1))

df2

user item_1_time_1 item_2_time_1 item_3_time_1 item_1_time_2 item_2_time_2 item_3_time_2 item_1_check item_2_check item_3_check item_check
1 a 1 1 0 1 1 0 1 1 1 1
2 b 0 1 0 0 0 0 1 0 1 0
3 c 0 1 1 0 0 1 1 0 1 0
4 d 0 0 1 0 0 0 1 1 0 0
5 e NA NA 0 NA NA 1 1 1 1 1
到目前为止我已经尝试过
library(tidyverse)
df2 <- df %>%
mutate(across(ends_with('time_2'), replace_na, 0)) %>%
mutate(across(ends_with('time_1'), replace_na, 0)) %>%
mutate(item_1_check = if_else(item_1_time_1 == 1 & item_1_time_2 == 0, 0, 1),
item_2_check = if_else(item_2_time_1 == 1 & item_2_time_2 == 0, 0, 1),
item_3_check = if_else(item_3_time_1 == 1 & item_3_time_2 == 0, 0, 1)) %>%
mutate(item_check = pmin(item_1_check, item_2_check, item_3_check))
我想概括上面的 mutate 调用,以便它们可以处理 n 个项目,而不仅仅是 3 个。有什么方法可以使用 ends_with('check')最后的变异?变量名称没有变化,但项目编号和时间段不同。

最佳答案

一种选择是 reshape 为“长”格式并执行一次

library(dplyr)
library(tidyr)
df %>%
pivot_longer(cols = -user, names_to = c('group', '.value'),
names_sep="_(?=time)") %>%
mutate(across(starts_with('time'), replace_na, 0)) %>%
group_by(group) %>%
transmute(user, check = !(time_1 & !time_2)) %>%
ungroup %>%
group_by(user) %>%
summarise(check = min(check), .groups = 'drop') %>%
right_join(df, .) %>%
select(names(df), check)
# user item_1_time_1 item_2_time_1 item_3_time_1 item_1_time_2 item_2_time_2 item_3_time_2 check
#1 a 1 1 0 1 1 0 1
#2 b 0 1 0 0 0 0 0
#3 c 0 1 1 0 0 1 0
#4 d 0 0 0 0 0 0 1
#5 e NA NA 0 NA NA 1 1

或使用 base R
df$check <-  +( Reduce(`&`, lapply(split.default(replace(df[-1], 
is.na(df[-1]), 0), sub("time_\\d+", "", names(df)[-1])),
function(x) !(x[[1]] & !x[[2]]))))

关于R:将 mutate 调用从处理三个二进制变量调整为 n 个二进制变量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63973178/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com