- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下面的代码创建了一个分类图,上面有一个点图,其中点图显示了每个类别的均值和 95% 置信区间。我需要将平均数据标签添加到图中,但我不知道该怎么做。
仅供引用,每个类别都有数千个点,所以我不想标记每个数据点,只是 estimator=np.mean
点图中的值。这可能吗??
我在这里创建了一个示例数据集,因此您可以复制和粘贴代码并自己运行它。
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import numpy as np
d = {'SurfaceVersion': ['v1', 'v1', 'v1', 'v2', 'v2', 'v2', 'v3', 'v3', 'v3'],
'Error%': [.01, .03, .15, .28, .39, .01, .01, .06, .09]}
df_comb = pd.DataFrame(data=d)
plotHeight = 10
plotAspect = 2
#create catplot with jitter per surface version:
ax = sns.catplot(data=df_comb, x='SurfaceVersion', y='Error%', jitter=True, legend=False, zorder=1, height=plotHeight, aspect=plotAspect)
ax = sns.pointplot(data=df_comb, x='SurfaceVersion', y='Error%', estimator=np.mean, ci=95, capsize=.1, errwidth=1, hue='SurfaceVersion', color='k',zorder=2, height=plotHeight, aspect=plotAspect, join=False)
ax.yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1.0))
plt.gca().legend().set_title('')
plt.grid(color='grey', which='major', axis='y', linestyle='--')
plt.xlabel('Surface Version')
plt.ylabel('Error %')
plt.subplots_adjust(top=0.95, left=.05)
plt.suptitle('Error%')
plt.legend([],[], frameon=False) #This is to get rid of the legend that pops up with the seaborn plot b/c it's buggy.
plt.axhline(y=0, color='r', linestyle='--')
plt.show()
最佳答案
您可以预先计算平均值并在循环中添加标签。请记住,就定位而言,x 值实际上只是 0、1、2。
mean_df = df_comb.groupby("SurfaceVersion")[["Error%"]].mean()
for i, row in enumerate(mean_df.itertuples()):
x_value, mean = row
plt.annotate(
round(mean, 2), # label text
(i, mean), # (x, y)
textcoords="offset points",
xytext=(10, 0), # (x, y) offset amount
ha='left')
关于python - 如何将数据标签添加到seaborn pointplot?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64070577/
如何从 seaborn 生成的热图中隐藏颜色条 import numpy as np; np.random.seed(0) import seaborn as sns; sns.set_theme()
我正在尝试使用 seaborn 制作热图,但被困在更改特定值的颜色。假设值 0 应该是白色,值 1 应该是灰色,然后使用 cmap 提供的调色板。 试图使用面具,但感到困惑。 import matpl
我想改变散点的大小。 这些都不起作用: sns.relplot(x='columnx', y='columny', hue='cluster', data=df) sns.relplot(x='col
这个问题在这里已经有了答案: What is y axis in seaborn distplot? (3 个答案) 关闭 3 年前。 我正在使用以下语句绘制分布图: a = sns.distplo
我注意到 sns.barplot 使用标准错误作为误差条默认 1 。有办法把它改成SD吗? ax = sns.barplot(x="day", y="tip", data=tips, ci=???)
向 seaborn FacetGrid 中的每个直方图添加表示平均值(或其他集中趋势度量)的点和可变性度量(例如,标准偏差或置信区间)的最佳方法是什么? 结果应该类似于显示的图 here ,但在每个
我正在尝试使用 sns.histplot() 而不是 sns.distplot() 因为我在 colab 中收到以下消息: FutureWarning: distplot is a deprecate
我想绘制 3 个水平条形图,标签作为 y 轴,数据作为 x 轴,我希望每个图都是不同的颜色,并有某种类型的注释,例如星号,这取决于关于数据中某列所表示的重要性,例如: dat = pd.DataFra
根据 seaborn 文档 here seaborn.distplot()已被弃用,向前支持的图是:seaborn.displot()和 seaborn.histplot() . 但是,当我尝试使用
为了使 seaborn.pairplot() 正常工作,在 jupyter notebook 中执行了以下步骤。 /usr/local/lib/python2.7/site-packages/matp
使用 pandas 数据框绘制混淆矩阵时 y 轴两端被切一半? 这就是我得到的: 我使用了这里的代码How can I plot a confusion matrix?使用 pandas 数据框: i
您好,我刚刚为 seaborn 热图创建了自定义 cmap,但是当我想使用它时,它没有显示正确的颜色。我已经一步一步完成了: import seaborn as sns import numpy as
亲爱的,我正在尝试将 kaggle 教程代码应用于 Iris 数据集。 不幸的是,当我执行图表的代码时,我只能看到这个输出而看不到任何图表: matplotlib.axes._subplots.Axe
这个问题在这里已经有了答案: Seaborn plots in a loop (6 个答案) How to plot in multiple subplots (12 个答案) 关闭 1 年前。 我
我正在尝试在 python 中使用 seaborn 绘制直方图。但它给我的只是一个空白数字。 这是我专栏的describe(): 代码: plt.subplots(figsize=(7,7)) sns
如何在seaborn.lineplot中分别设置标记和线条的透明度? 我有一组点,我想画一条连接所有点的线图。我希望线条比标记更透明。如何做到这一点? 这是我的目标: 这是我的代码: import m
我正在使用 seaborn 库在 python 中绘制热图。数据框包含一些缺失值 (NaN)。我希望与这些字段对应的热图单元格是白色的(默认情况下)并且还用字符串 NA 进行注释。但是,如果我看对了,
如何对这个图进行排序以从大到小显示?我尝试使用 sort_values 但不起作用 plt.figure(figsize=(15,8)) sns.countplot(x='arrival_date_m
我的目标是在使用 seaborn 绘制的图上的 y = 0 上绘制一条水平红线:sns.lmplot由 col= 分割或 row= . import numpy as np, seaborn as s
我正在使用seaborn pairplot绘制我的数据点不同维度的散点图。但是,我希望数据点的标记具有与数据点的维度之一相对应的大小。我有以下代码: markersize = 1000* my_dat
我是一名优秀的程序员,十分优秀!