- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在 Breaking Linear Classifiers on ImageNet ,作者提出了以下方法来创建欺骗 ConvNets 的对抗性图像:
In short, to create a fooling image we start from whatever image we want (an actual image, or even a noise pattern), and then use backpropagation to compute the gradient of the image pixels on any class score, and nudge it along. We may, but do not have to, repeat the process a few times. You can interpret backpropagation in this setting as using dynamic programming to compute the most damaging local perturbation to the input. Note that this process is very efficient and takes negligible time if you have access to the parameters of the ConvNet (backprop is fast), but it is possible to do this even if you do not have access to the parameters but only to the class scores at the end. In this case, it is possible to compute the data gradient numerically, or to to use other local stochastic search strategies, etc. Note that due to the latter approach, even non-differentiable classifiers (e.g. Random Forests) are not safe (but I haven’t seen anyone empirically confirm this yet).
np.gradient(img)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
array([[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.14117648, 0.49019611, 0.74901962,
0.85490203, 1. , 0.99607849, 0.99607849, 0.9450981 ,
0.20000002, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.80000007, 0.97647065, 0.99215692, 0.99215692,
0.99215692, 0.99215692, 0.99215692, 0.99215692, 0.99215692,
0.98039222, 0.92156869, 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.34509805,
0.9450981 , 0.98431379, 0.99215692, 0.88235301, 0.55686277,
0.19215688, 0.04705883, 0.04705883, 0.04705883, 0.41176474,
0.99215692, 0.99215692, 0.43529415, 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.37254903, 0.88235301,
0.99215692, 0.65490198, 0.44313729, 0.05490196, 0. ,
0. , 0. , 0. , 0. , 0.0627451 ,
0.82745105, 0.99215692, 0.45882356, 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.35686275, 0.9333334 , 0.99215692,
0.66666669, 0.10980393, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.58823532, 0.99215692, 0.45882356, 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0.38431376, 0.98431379, 0.85490203, 0.18823531,
0.01960784, 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.58823532, 0.99215692, 0.45882356, 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0.43921572, 0.99215692, 0.43921572, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.03529412,
0.72156864, 0.94901967, 0.07058824, 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0.07843138, 0.17647059, 0.01960784, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.26274511,
0.99215692, 0.94117653, 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.10588236, 0.91764712,
0.97254908, 0.41176474, 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.17254902, 0.6156863 , 0.99215692,
0.51764709, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.04313726, 0.74117649, 0.99215692, 0.7960785 ,
0.10588236, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.04313726, 0.61176473, 0.99215692, 0.96470594, 0.3019608 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.04313726,
0.61176473, 0.99215692, 0.79215693, 0.26666668, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.04313726, 0.61176473,
0.99215692, 0.88627458, 0.27843139, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.11764707, 0.12941177,
0.12941177, 0.54901963, 0.63921571, 0.72941178, 0.99215692,
0.88627458, 0.14901961, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0.04705883, 0.31764707, 0.95686281, 0.99215692,
0.99215692, 0.99215692, 0.99215692, 0.99215692, 0.99215692,
0.99215692, 0.72941178, 0.27450982, 0.09019608, 0. ,
0. , 0.08627451, 0.61176473, 0.3019608 , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0.3137255 , 0.76470596, 0.99215692, 0.99215692, 0.99215692,
0.99215692, 0.99215692, 0.97254908, 0.91764712, 0.65098041,
0.97254908, 0.99215692, 0.99215692, 0.94117653, 0.58823532,
0.28627452, 0.56470591, 0.40784317, 0.20000002, 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0.02745098,
0.97254908, 0.99215692, 0.99215692, 0.99215692, 0.99215692,
0.99215692, 0.94901967, 0.41176474, 0. , 0. ,
0.41960788, 0.94901967, 0.99215692, 0.99215692, 0.99215692,
0.96078438, 0.627451 , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0.22352943,
0.98039222, 0.99215692, 0.99215692, 0.99215692, 0.96862751,
0.52941179, 0.08235294, 0. , 0. , 0. ,
0. , 0.08235294, 0.45882356, 0.71764708, 0.71764708,
0.18823531, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0.47450984, 0.48235297, 0.6901961 , 0.52941179, 0.0627451 ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ]], dtype=float32)
array([[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.19215688, 0.70588237, 0.99215692,
0.95686281, 0.19607845, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.72156864, 0.98823535, 0.98823535,
0.90980399, 0.64313728, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.25882354, 0.91764712, 0.98823535, 0.53333336,
0.14901961, 0.21960786, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.07450981, 0.92549026, 0.98823535, 0.6901961 , 0.01568628,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.29803923, 0.98823535, 0.98823535, 0.21960786, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.54509807, 0.99215692, 0.67843139, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.08627451,
0.83137262, 0.98823535, 0.27058825, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.45490199,
0.99215692, 0.94117653, 0.19607845, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.6156863 ,
0.99215692, 0.80784321, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.90196085,
0.99215692, 0.40000004, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.90588242,
1. , 0.70588237, 0.5411765 , 0.70588237, 0.99215692,
1. , 0.99215692, 0.8705883 , 0.38039219, 0.01176471,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.90196085,
0.99215692, 0.98823535, 0.98823535, 0.98823535, 0.98823535,
0.82745105, 0.98823535, 0.98823535, 0.98823535, 0.45882356,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.90196085,
0.99215692, 0.94117653, 0.71764708, 0.34901962, 0.27058825,
0.02745098, 0.27058825, 0.67058825, 0.98823535, 0.98823535,
0.33333334, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.52941179,
0.99215692, 0.60000002, 0. , 0. , 0. ,
0. , 0. , 0.0509804 , 0.84313732, 0.98823535,
0.45490199, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.45490199,
0.99215692, 0.80784321, 0. , 0. , 0. ,
0. , 0. , 0. , 0.60784316, 0.98823535,
0.45490199, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.41568631,
1. , 0.82745105, 0.02745098, 0. , 0. ,
0. , 0. , 0.19215688, 0.91372555, 0.99215692,
0.45490199, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.62352943, 0.98823535, 0.60392159, 0.03529412, 0. ,
0. , 0.11764707, 0.77254909, 0.98823535, 0.98823535,
0.37254903, 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.06666667, 0.89019614, 0.98823535, 0.60392159, 0.27450982,
0.31764707, 0.89411771, 0.98823535, 0.89019614, 0.50980395,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.19607845, 0.89019614, 0.98823535, 0.98823535,
0.99215692, 0.98823535, 0.72549021, 0.19607845, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.18823531, 0.7019608 , 0.98823535,
0.74509805, 0.45882356, 0.02352941, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. ]], dtype=float32)
最佳答案
仅类(class)成绩
如果您只能访问任何图像的类分数,则表明您可以做很多事情来真正计算梯度。
如果返回的内容可以看作是每个类别的相对分数,则它是一个向量 v
这是某个函数的结果 f
作用于向量 A
包含有关图像的所有信息*。函数的真实梯度由矩阵 D(A)
给出,这取决于 A
,使得 D(A)*B = (f(A + epsilon*B) -f(A))/epsilon
中小epsilon
对于任何 B
.您可以 使用 epsilon 的一些小值和许多测试矩阵 B
在数值上近似此值(A
的每个元素一个就足够了),但这可能会不必要地昂贵。
您要做的是最大限度地提高算法识别图像的难度。也就是说,对于给定的算法 f
您想最大化一些适当的度量,以衡量算法对您的每张图像的识别程度A
.有很多方法可以做到这一点。我对它们不太熟悉,但我最近看到的一个演讲中有一些关于此的有趣 Material ( https://wsc.project.cwi.nl/woudschoten-conferences/2016-woudschoten-conference/PRtalk1.pdf ,参见第 24 页及以后)。如果您有高维输入,计算整个梯度通常太昂贵了。相反,您只需修改一个随机选择的坐标,并在正确的方向上或多或少地采取许多(许多)小而廉价的步骤,而不是寻求某种最佳的大而昂贵的步骤。
型号可用且适用
如果您完全了解模型并且可以明确地写成 v = f(A)
然后你可以计算函数 f
的梯度.如果您试图击败的算法是线性回归,可能有多个层,就会出现这种情况。渐变的形式应该更容易让你弄清楚,而不是我在这里写下来。
有了这个梯度可用并且相当便宜来评估它对不同图像的值(value) A
例如,您可以继续使用最速下降(或上升)方法来降低算法对图像的识别度。
重要的提示
最好不要忘记您的方法不应该使图像对人类也难以辨认,否则会使这一切变得毫无意义。
关于image - 如何根据某个类计算图像的梯度?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41309829/
我正在尝试学习 Knockout 并尝试创建一个照片 uploader 。我已成功将一些图像存储在数组中。现在我想回帖。在我的 knockout 码(Javascript)中,我这样做: 我在 Jav
我正在使用 php 编写脚本。我的典型问题是如何在 mysql 中添加一个有很多替代文本和图像的问题。想象一下有机化学中具有苯结构的描述。 最有效的方法是什么?据我所知,如果我有一个图像,我可以在数据
我在两个图像之间有一个按钮,我想将按钮居中到图像高度。有人可以帮帮我吗? Entrar
下面的代码示例可以在这里查看 - http://dev.touch-akl.com/celebtrations/ 我一直在尝试做的是在 Canvas 上绘制 2 个图像(发光,然后耀斑。这些图像的链接
请检查此https://jsfiddle.net/rhbwpn19/4/ 图像预览对于第一篇帖子工作正常,但对于其他帖子则不然。 我应该在这里改变什么? function readURL(input)
我对 Canvas 有疑问。我可以用单个图像绘制 Canvas ,但我不能用单独的图像绘制每个 Canvas 。- 如果数据只有一个图像,它工作正常,但数据有多个图像,它不工作你能帮帮我吗? va
我的问题很简单。如何获取 UIImage 的扩展类型?我只能将图像作为 UIImage 而不是它的名称。图像可以是静态的,也可以从手机图库甚至文件路径中获取。如果有人可以为此提供一点帮助,将不胜感激。
我有一个包含 67 个独立路径的 SVG 图像。 是否有任何库/教程可以为每个路径创建单独的光栅图像(例如 PNG),并可能根据路径 ID 命名它们? 最佳答案 谢谢大家。我最终使用了两个答案的组合。
我想将鼠标悬停在一张图片(音乐专辑)上,然后播放一张唱片,所以我希望它向右移动并旋转一点,当它悬停时我希望它恢复正常动画片。它已经可以向右移动,但我无法让它随之旋转。我喜欢让它尽可能简单,因为我不是编
Retina iOS 设备不显示@2X 图像,它显示 1X 图像。 我正在使用 Xcode 4.2.1 Build 4D502,该应用程序的目标是 iOS 5。 我创建了一个测试应用(主/细节)并添加
我正在尝试从头开始以 Angular 实现图像 slider ,并尝试复制 w3school基于图像 slider 。 下面我尝试用 Angular 实现,谁能指导我如何使用 Angular 实现?
我正在尝试获取图像的图像数据,其中 w= 图像宽度,h = 图像高度 for (int i = x; i imageData[pos]>0) //Taking data (here is the pr
我的网页最初通过在 javascript 中动态创建图像填充了大约 1000 个缩略图。由于权限问题,我迁移到 suPHP。现在不用标准 标签本身 我正在通过这个 php 脚本进行检索 $file
我正在尝试将 python opencv 图像转换为 QPixmap。 我按照指示显示Page Link我的代码附在下面 img = cv2.imread('test.png')[:,:,::1]/2
我试图在这个 Repository 中找出语义分割数据集的 NYU-v2 . 我很难理解图像标签是如何存储的。 例如,给定以下图像: 对应的标签图片为: 现在,如果我在 OpenCV 中打开标签图像,
import java.util.Random; class svg{ public static void main(String[] args){ String f="\"
我有一张 8x8 的图片。 (位图 - 可以更改) 我想做的是能够绘制一个形状,给定一个 Path 和 Paint 对象到我的 SurfaceView 上。 目前我所能做的就是用纯色填充形状。我怎样才
要在页面上显示图像,你需要使用源属性(src)。src 指 source 。源属性的值是图像的 URL 地址。 定义图像的语法是: 在浏览器无法载入图像时,替换文本属性告诉读者她们失去的信息。此
**MMEditing是基于PyTorch的图像&视频编辑开源工具箱,支持图像和视频超分辨率(super-resolution)、图像修复(inpainting)、图像抠图(matting)、
我正在尝试通过资源文件将图像插入到我的程序中,如下所示: green.png other files 当我尝试使用 QImage 或 QPixm
我是一名优秀的程序员,十分优秀!