gpt4 book ai didi

functional-programming - 是否可以在 Idris 中定义 Zipp?

转载 作者:行者123 更新时间:2023-12-04 08:42:07 31 4
gpt4 key购买 nike

这是this follow-up question的后续. Zipp 是使用折叠的 zip 的非递归、非模式匹配实现。在无类型的 lambda 演算上,我们有:

-- foldr for church encoded lists (that is, folds)
foldr cons nil list = list cons nil

zipp_left = foldr (λ x xs cont -> (cont x xs)) (const [])
zipp_right = foldr (λ y ys x cont -> (cons (pair x y) (cont ys))) (const (const []))
zipp = λ a b -> (zipp_left a) (zipp_right b)

正如@András_Kovács 所证明的那样,在 Haskell 上不可能输入这个术语,但 Agda 能够做到,尽管有点复杂。是否可以在 Idris 中优雅地定义这个程序?

最佳答案

这是 András's answer 的直译:

%default total

foldr : {a : Type} -> (F : List a -> Type) ->
(f : {xs : List a} -> (x : a) -> F xs -> F (x :: xs)) ->
F [] -> (xs : List a) -> F xs
foldr F f z [] = z
foldr F f z (x :: xs) = f x (foldr F f z xs)

Zip1 : Type -> Type -> Type -> Nat -> Type
Zip1 A B C Z = C -> List (A, B)
Zip1 A B C (S n) = (A -> Zip1 A B C n -> List (A, B)) -> List (A, B)

Zip2 : Type -> Type -> Type -> Nat -> Type
Zip2 A B C Z = A -> C -> List (A, B)
Zip2 A B C (S n) = A -> (Zip2 A B C n -> List (A, B)) -> List (A, B)

data Ex2 : (a : Type) -> (b : Type) -> (p : a -> b -> Type) -> Type where
MkEx2 : (x : a) -> (y : b) -> p x y -> Ex2 a b p

unifyZip : (A : Type) -> (B : Type) -> (n : Nat) -> (m : Nat) -> Ex2 Type Type (\C1 => \C2 => Zip1 A B C1 n = (Zip2 A B C2 m -> List (A, B)))
unifyZip A B Z m = MkEx2 (Zip2 A B Void m) Void Refl
unifyZip A B (S n) Z = MkEx2 Void (Zip1 A B Void n) Refl
unifyZip A B (S n) (S m) with (unifyZip A B n m)
| MkEx2 C1 C2 p = MkEx2 C1 C2 (cong {f = \t => (A -> t -> List (A, B)) -> List (A, B)} p)

zip1 : (A : Type) -> (B : Type) -> (C : Type) -> (xs : List A) -> Zip1 A B C (length xs)
zip1 A B C = foldr (Zip1 A B C . length) (\x => \r => \k => k x r) (const [])

zip2 : (A : Type) -> (B : Type) -> (C : Type) -> (ys : List B) -> Zip2 A B C (length ys)
zip2 A B C = foldr (Zip2 A B C . length) (\y => \k => \x => \r => (x, y) :: r k) (const . const $ [])

rewriteTy : a = b -> a -> b
rewriteTy Refl x = x

zipp : {A : Type} -> {B : Type} -> List A -> List B -> List (A, B)
zipp {A} {B} xs ys with (unifyZip A B (length xs) (length ys))
| MkEx2 C1 C2 p with (zip1 A B C1 xs)
| zxs with (zip2 A B C2 ys)
| zys = rewriteTy p zxs zys

为简单起见,我定义了自己的 Ex2rewriteTy而不是与标准库搏斗。 Ex2 a b P大概可以表示为 DPair (a, b) (uncurry P) .

关于functional-programming - 是否可以在 Idris 中定义 Zipp?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30586631/

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com