gpt4 book ai didi

azure-machine-learning-studio - Azure ML Python SDK mini_batch_size 在 ParallelRunConfig for TabularDataset 上未按预期工作

转载 作者:行者123 更新时间:2023-12-04 08:34:24 25 4
gpt4 key购买 nike

我正在使用 Azure ML Python SDK 来构建自定义实验管道。我正在尝试在具有 GPU 的 4 个 VM 集群上并行运行我的表格数据集的训练。我正在关注此链接上提供的文档 https://docs.microsoft.com/en-us/python/api/azureml-contrib-pipeline-steps/azureml.contrib.pipeline.steps.parallelrunconfig?view=azure-ml-py
我面临的问题是,无论我为 mini_batch_size 设置什么值,单个运行获得所有行。我正在使用 EntryScript().logger 来检查传递给每个进程的行数。我看到的是,我的数据被 4 个虚拟机处理了 4 次,并且没有分成 4 个部分。我试过设置值 mini_batch_size1KB , 10KB , 1MB ,但似乎没什么区别。
这是我的 ParallelRunConfig 和 ParallelRunStep 代码。任何提示表示赞赏。谢谢

#------------------------------------------------#
# Step 2a - Batch config for parallel processing #
#------------------------------------------------#
from azureml.pipeline.steps import ParallelRunConfig

# python script step for batch processing
dataprep_source_dir = "./src"
entry_point = "batch_process.py"
mini_batch_size = "1KB"
time_out = 300

parallel_run_config = ParallelRunConfig(
environment=custom_env,
entry_script=entry_point,
source_directory=dataprep_source_dir,
output_action="append_row",
mini_batch_size=mini_batch_size,
error_threshold=1,
compute_target=compute_target,
process_count_per_node=1,
node_count=vm_max_count,
run_invocation_timeout=time_out
)


#-------------------------------#
# Step 2b - Run Processing Step #
#-------------------------------#
from azureml.pipeline.core import PipelineData
from azureml.pipeline.steps import PythonScriptStep
from azureml.pipeline.steps import ParallelRunStep
from datetime import datetime

# create upload dataset output for processing
output_datastore_name = processed_set_name
output_datastore = Datastore(workspace, output_datastore_name)

processed_output = PipelineData(name="scores",
datastore=output_datastore,
output_path_on_compute="outputs/")

# pipeline step for parallel processing
parallel_step_name = "batch-process-" + datetime.now().strftime("%Y%m%d%H%M")

process_step = ParallelRunStep(
name=parallel_step_name,
inputs=[data_input],
output=processed_output,
parallel_run_config=parallel_run_config,
allow_reuse=False
)

最佳答案

我已经找到了这个问题的原因。文档中没有提到的是 mini_batch_size仅当您的表格数据集包含多个文件时才有效,例如,多个带有 X 的 Parquet 文件。每个文件的行数。如果您有一个包含所有行的巨大文件,mini_batch_size无法从中仅提取部分数据以进行并行处理。我已经通过将 Azure Synapse Workspace 数据管道配置为每个文件只存储几行来解决这个问题。

关于azure-machine-learning-studio - Azure ML Python SDK mini_batch_size 在 ParallelRunConfig for TabularDataset 上未按预期工作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64869372/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com