- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试总结以下神经网络的训练过程。
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(".\MNIST",one_hot=True)
# Create the model
def train_and_test(hidden1,hidden2, learning_rate, epochs, batch_size):
with tf.name_scope("first_layer"):
input_data = tf.placeholder(tf.float32, [batch_size, 784], name = "input")
weights1 = tf.Variable(
tf.random_normal(shape =[784, hidden1],stddev=0.1),name = "weights")
bias = tf.Variable(tf.constant(0.0,shape =[hidden1]), name = "bias")
activation = tf.nn.relu(
tf.matmul(input_data, weights1) + bias, name = "relu_act")
tf.summary.histogram("first_activation", activation)
with tf.name_scope("second_layer"):
weights2 = tf.Variable(
tf.random_normal(shape =[hidden1, hidden2],stddev=0.1),
name = "weights")
bias2 = tf.Variable(tf.constant(0.0,shape =[hidden2]), name = "bias")
activation2 = tf.nn.relu(
tf.matmul(activation, weights2) + bias2, name = "relu_act")
tf.summary.histogram("second_activation", activation2)
with tf.name_scope("output_layer"):
weights3 = tf.Variable(
tf.random_normal(shape=[hidden2, 10],stddev=0.5), name = "weights")
bias3 = tf.Variable(tf.constant(1.0, shape =[10]), name = "bias")
output = tf.add(
tf.matmul(activation2, weights3, name = "mul"), bias3, name = "output")
tf.summary.histogram("output_activation", output)
y_ = tf.placeholder(tf.float32, [batch_size, 10])
with tf.name_scope("loss"):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=output))
tf.summary.scalar("cross_entropy", cross_entropy)
with tf.name_scope("train"):
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
with tf.name_scope("tests"):
correct_prediction = tf.equal(tf.argmax(output, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
summary_op = tf.summary.merge_all()
sess = tf.InteractiveSession()
writer = tf.summary.FileWriter("./data", sess.graph)
tf.global_variables_initializer().run()
# Train
for i in range(epochs):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, summary = sess.run([train_step,summary_op], feed_dict={input_data: batch_xs, y_: batch_ys})
writer.add_summary(summary)
if i % 10 ==0:
test_xs, test_ys = mnist.train.next_batch(batch_size)
test_accuracy = sess.run(accuracy, feed_dict = {input_data : test_xs, y_ : test_ys})
writer.close()
return test_accuracy
if __name__ =="__main__":
print(train_and_test(500, 200, 0.001, 10000, 100))
Traceback (most recent call last):
File "<ipython-input-18-78c88c8e6471>", line 1, in <module>
runfile('C:/Users/Suman
Nepal/Documents/Projects/MNISTtensorflow/mnist.py', wdir='C:/Users/Suman
Nepal/Documents/Projects/MNISTtensorflow')
File "C:\Users\Suman Nepal\Anaconda3\lib\site-
packages\spyder\utils\site\sitecustomize.py", line 880, in runfile
execfile(filename, namespace)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-
packages\spyder\utils\site\sitecustomize.py", line 102, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/Suman Nepal/Documents/Projects/MNISTtensorflow/mnist.py", line 68, in <module>
print(train_and_test(500, 200, 0.001, 100, 100))
File "C:/Users/Suman Nepal/Documents/Projects/MNISTtensorflow/mnist.py", line 58, in train_and_test
_, summary = sess.run([train_step,summary_op], feed_dict={input_data: batch_xs, y_: batch_ys})
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 789, in run
run_metadata_ptr)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 997, in _run
feed_dict_string, options, run_metadata)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1132, in _do_run
target_list, options, run_metadata)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _do_call
raise type(e)(node_def, op, message)
InvalidArgumentError: Shape [-1,784] has negative dimensions
[[Node: first_layer_5/input = Placeholder[dtype=DT_FLOAT, shape=[?,784], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op 'first_layer_5/input', defined at:
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 231, in <module>
main()
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 227, in main
kernel.start()
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2827, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-8-78c88c8e6471>", line 1, in <module>
runfile('C:/Users/Suman Nepal/Documents/Projects/MNISTtensorflow/mnist.py', wdir='C:/Users/Suman Nepal/Documents/Projects/MNISTtensorflow')
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 880, in runfile
execfile(filename, namespace)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 102, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/Suman Nepal/Documents/Projects/MNISTtensorflow/mnist.py", line 86, in <module>
File "C:/Users/Suman Nepal/Documents/Projects/MNISTtensorflow/mnist.py", line 12, in train_and_test
input_data = tf.placeholder(tf.float32, [None, 784], name = "input")
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1530, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 1954, in _placeholder
name=name)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 767, in apply_op
op_def=op_def)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2506, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Users\Suman Nepal\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1269, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Shape [-1,784] has negative dimensions
[[Node: first_layer_5/input = Placeholder[dtype=DT_FLOAT, shape=[?,784], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
最佳答案
我也遇到了这个问题。围绕基本共识进行搜索是为了检查代码中其他地方的问题。
为我解决的问题是我正在做 sess.run(summary_op)
没有为我的占位符输入数据。
Tensorflow 对占位符似乎有点奇怪,如果您尝试评估独立于它们的部分图形,它们通常不会介意您不喂它们。但在这里,它做到了。
关于Tensorflow 汇总合并错误 : Shape [-1, 784] 具有负尺寸,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44706840/
这是代码片段。 请说出这种用小内存存储大数据的算法是什么。 public static void main(String[] args) { long longValue = 21474836
所以我使用 imap 从 gmail 和 outlook 接收电子邮件。 Gmail 像这样编码 =?UTF-8?B?UmU6IM69zq3OvyDOtc68zrHOuc67IG5ldyBlbWFpb
很久以前就学会了 C 代码;想用 Scheme 尝试一些新的和不同的东西。我正在尝试制作一个接受两个参数并返回两者中较大者的过程,例如 (define (larger x y) (if (> x
Azure 恢复服务保管库有两个备份配置选项 - LRS 与 GRS 这是一个有关 Azure 恢复服务保管库的问题。 当其驻留区域发生故障时,如何处理启用异地冗余的恢复服务保管库?如果未为恢复服务启
说,我有以下实体: @Entity public class A { @Id @GeneratedValue private Long id; @Embedded private
我有下一个问题。 我有下一个标准: criteria.add(Restrictions.in("entity.otherEntity", getOtherEntitiesList())); 如果我的
如果这是任何类型的重复,我会提前申请,但我找不到任何可以解决我的具体问题的内容。 这是我的程序: import java.util.Random; public class CarnivalGame{
我目前正在使用golang创建一个聚合管道,在其中使用“$ or”运算符查询文档。 结果是一堆需要分组的未分组文档,这样我就可以进入下一阶段,找到两个数据集之间的交集。 然后将其用于在单独的集合中进行
是否可以在正则表达式中创建 OR 条件。 我正在尝试查找包含此类模式的文件名列表的匹配项 第一个案例 xxxxx-hello.file 或者案例二 xxxx-hello-unasigned.file
该程序只是在用户输入行数时创建菱形的形状,因此它有 6 个 for 循环; 3 个循环创建第一个三角形,3 个循环创建另一个三角形,通过这 2 个三角形和 6 个循环,我们得到了一个菱形,这是整个程序
我有一个像这样的查询字符串 www.google.com?Department=Education & Finance&Department=Health 我有这些 li 标签,它们的查询字符串是这样
我有一个带有静态构造函数的类,我用它来读取 app.config 值。如何使用不同的配置值对类进行单元测试。我正在考虑在不同的应用程序域中运行每个测试,这样我就可以为每个测试执行静态构造函数 - 但我
我正在寻找一个可以容纳多个键的容器,如果我为其中一个键值输入保留值(例如 0),它会被视为“或”搜索。 map, int > myContainer; myContainer.insert(make_
我正在为 Web 应用程序创建数据库,并正在寻找一些建议来对可能具有多种类型的单个实体进行建模,每种类型具有不同的属性。 作为示例,假设我想为“数据源”对象创建一个关系模型。所有数据源都会有一些共享属
(1) =>CREATE TABLE T1(id BIGSERIAL PRIMARY KEY, name TEXT); CREATE TABLE (2) =>INSERT INTO T1 (name)
我不确定在使用别名时如何解决不明确的列引用。 假设有两个表,a 和 b,它们都有一个 name 列。如果我加入这两个表并为结果添加别名,我不知道如何为这两个表引用 name 列。我已经尝试了一些变体,
我的查询是: select * from table where id IN (1,5,4,3,2) 我想要的与这个顺序完全相同,不是从1...5,而是从1,5,4,3,2。我怎样才能做到这一点? 最
我正在使用 C# 代码执行动态生成的 MySQL 查询。抛出异常: CREATE TABLE dump ("@employee_OID" VARCHAR(50)); "{"You have an er
我有日期 2016-03-30T23:59:59.000000+0000。我可以知道它的格式是什么吗?因为如果我使用 yyyy-MM-dd'T'HH:mm:ss.SSS,它会抛出异常 最佳答案 Sim
我有一个示例模式,它的 SQL Fiddle 如下: http://sqlfiddle.com/#!2/6816b/2 这个 fiddle 只是根据 where 子句中的条件查询示例数据库,如下所示:
我是一名优秀的程序员,十分优秀!