- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我写了一个 fastapi 应用程序。现在我正在考虑部署它,但是我似乎遇到了奇怪的意外性能问题,这似乎取决于我使用 uvicorn 还是 gunicorn。特别是如果我使用 gunicorn,所有代码(甚至标准库纯 python 代码)似乎都会变慢。对于性能调试,我编写了一个小应用程序来演示这一点:
import asyncio, time
from fastapi import FastAPI, Path
from datetime import datetime
app = FastAPI()
@app.get("/delay/{delay1}/{delay2}")
async def get_delay(
delay1: float = Path(..., title="Nonblocking time taken to respond"),
delay2: float = Path(..., title="Blocking time taken to respond"),
):
total_start_time = datetime.now()
times = []
for i in range(100):
start_time = datetime.now()
await asyncio.sleep(delay1)
time.sleep(delay2)
times.append(str(datetime.now()-start_time))
return {"delays":[delay1,delay2],"total_time_taken":str(datetime.now()-total_start_time),"times":times}
使用以下命令运行 fastapi appi:
gunicorn api.performance_test:app -b localhost:8001 -k uvicorn.workers.UvicornWorker --workers 1
到达
http://localhost:8001/delay/0.0/0.0
的响应体始终类似于:
{
"delays": [
0.0,
0.0
],
"total_time_taken": "0:00:00.057946",
"times": [
"0:00:00.000323",
...smilar values omitted for brevity...
"0:00:00.000274"
]
}
但是使用:
uvicorn api.performance_test:app --port 8001
我不断地得到这样的时间
{
"delays": [
0.0,
0.0
],
"total_time_taken": "0:00:00.002630",
"times": [
"0:00:00.000037",
...snip...
"0:00:00.000020"
]
}
当我取消注释
await asyncio.sleep(delay1)
语句时,差异变得更加明显。
pip freeze
输出的相关部分
fastapi==0.65.1
gunicorn==20.1.0
uvicorn==0.13.4
最佳答案
我无法重现您的结果。
我的环境:
Windows 10 上 WSL2 上的 ubuntu
我的相关部分 pip freeze
输出:
fastapi==0.65.1
gunicorn==20.1.0
uvicorn==0.14.0
import asyncio, time
from fastapi import FastAPI, Path
from datetime import datetime
import statistics
app = FastAPI()
@app.get("/delay/{delay1}/{delay2}")
async def get_delay(
delay1: float = Path(..., title="Nonblocking time taken to respond"),
delay2: float = Path(..., title="Blocking time taken to respond"),
):
total_start_time = datetime.now()
times = []
for i in range(100):
start_time = datetime.now()
await asyncio.sleep(delay1)
time.sleep(delay2)
time_delta= (datetime.now()-start_time).microseconds
times.append(time_delta)
times_average = statistics.mean(times)
return {"delays":[delay1,delay2],"total_time_taken":(datetime.now()-total_start_time).microseconds,"times_avarage":times_average,"times":times}
除了第一次加载网站外,我对两种方法的结果几乎相同。
0:00:00.000530
之间和
0:00:00.000620
大多数时候这两种方法。
0:00:00.003000
.
# `uvicorn performance_test:app --port 8083`
{"delays":[0.0,0.0],"total_time_taken":553,"times_avarage":4.4,"times":[15,7,5,4,4,4,4,5,5,4,4,5,4,4,5,4,4,5,4,4,5,4,4,5,4,4,4,5,4,4,5,4,4,5,4,4,4,4,4,5,4,5,5,4,4,4,4,4,4,5,4,4,4,5,4,4,4,4,4,4,5,4,4,5,4,4,4,4,5,4,4,5,4,4,4,4,4,5,4,4,5,4,4,5,4,4,5,4,4,4,4,4,4,4,5,4,4,4,5,4]}
{"delays":[0.0,0.0],"total_time_taken":575,"times_avarage":4.61,"times":[15,6,5,5,5,5,5,5,5,5,5,4,5,5,5,5,4,4,4,4,4,5,5,5,4,5,4,4,4,5,5,5,4,5,5,4,4,4,4,5,5,5,5,4,4,4,4,5,5,4,4,4,4,4,4,4,4,5,5,4,4,4,4,5,5,5,5,5,5,5,4,4,4,4,5,5,4,5,5,4,4,4,4,4,4,5,5,5,4,4,4,4,5,5,5,5,4,4,4,4]}
{"delays":[0.0,0.0],"total_time_taken":548,"times_avarage":4.31,"times":[14,6,5,4,4,4,4,4,4,4,5,4,4,4,4,4,4,5,4,4,5,4,4,4,4,4,4,4,5,4,4,4,5,4,4,4,4,4,4,4,4,5,4,4,4,4,4,4,5,4,4,4,4,4,5,5,4,4,4,4,4,4,4,5,4,4,4,4,4,5,4,4,5,4,4,5,4,4,5,4,4,4,4,4,4,4,5,4,4,5,4,4,5,4,4,5,4,4,4,4]}
# `gunicorn performance_test:app -b localhost:8084 -k uvicorn.workers.UvicornWorker --workers 1`
{"delays":[0.0,0.0],"total_time_taken":551,"times_avarage":4.34,"times":[13,6,5,5,5,5,5,4,4,4,5,4,4,4,4,4,5,4,4,5,4,4,5,4,4,4,4,4,5,4,4,4,4,4,5,4,4,4,4,4,4,4,5,4,4,5,4,4,4,4,4,4,4,4,5,4,4,4,4,4,4,4,5,4,4,4,4,4,4,4,4,4,5,4,4,5,4,5,4,4,5,4,4,4,4,5,4,4,5,4,4,4,4,4,4,4,5,4,4,5]}
{"delays":[0.0,0.0],"total_time_taken":558,"times_avarage":4.48,"times":[14,7,5,5,5,5,5,5,4,4,4,4,4,4,5,5,4,4,4,4,5,4,4,4,5,5,4,4,4,5,5,4,4,4,5,4,4,4,5,5,4,4,4,4,5,5,4,4,5,5,4,4,5,5,4,4,4,5,4,4,5,4,4,5,5,4,4,4,5,4,4,4,5,4,4,4,5,4,5,4,4,4,5,4,4,4,5,4,4,4,5,4,4,4,5,4,4,4,5,4]}
{"delays":[0.0,0.0],"total_time_taken":550,"times_avarage":4.34,"times":[15,6,5,4,4,4,4,4,4,5,4,4,4,4,4,5,4,4,5,4,4,5,4,4,4,4,4,5,4,4,4,4,5,5,4,4,4,4,5,4,4,4,4,4,5,4,4,5,4,4,5,4,4,5,4,4,5,4,4,5,4,4,4,4,4,4,5,4,4,5,4,4,4,4,4,4,4,4,4,5,4,4,5,4,4,4,4,4,4,4,4,5,4,4,5,4,4,4,4,4]}
await asyncio.sleep(delay1)
(3 次尝试):
# `uvicorn performance_test:app --port 8083`
{"delays":[0.0,0.0],"total_time_taken":159,"times_avarage":0.6,"times":[3,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0]}
{"delays":[0.0,0.0],"total_time_taken":162,"times_avarage":0.49,"times":[3,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1]}
{"delays":[0.0,0.0],"total_time_taken":156,"times_avarage":0.61,"times":[3,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1]}
# `gunicorn performance_test:app -b localhost:8084 -k uvicorn.workers.UvicornWorker --workers 1`
{"delays":[0.0,0.0],"total_time_taken":159,"times_avarage":0.59,"times":[2,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0]}
{"delays":[0.0,0.0],"total_time_taken":165,"times_avarage":0.62,"times":[3,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1]}
{"delays":[0.0,0.0],"total_time_taken":164,"times_avarage":0.54,"times":[2,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1]}
我制作了一个 Python 脚本来更精确地对这些时间进行基准测试:
import statistics
import requests
from time import sleep
number_of_tests=1000
sites_to_test=[
{
'name':'only uvicorn ',
'url':'http://127.0.0.1:8083/delay/0.0/0.0'
},
{
'name':'gunicorn+uvicorn',
'url':'http://127.0.0.1:8084/delay/0.0/0.0'
}]
for test in sites_to_test:
total_time_taken_list=[]
times_avarage_list=[]
requests.get(test['url']) # first request may be slower, so better to not measure it
for a in range(number_of_tests):
r = requests.get(test['url'])
json= r.json()
total_time_taken_list.append(json['total_time_taken'])
times_avarage_list.append(json['times_avarage'])
# sleep(1) # results are slightly different with sleep between requests
total_time_taken_avarage=statistics.mean(total_time_taken_list)
times_avarage_avarage=statistics.mean(times_avarage_list)
print({'name':test['name'], 'number_of_tests':number_of_tests, 'total_time_taken_avarage':total_time_taken_avarage, 'times_avarage_avarage':times_avarage_avarage})
结果:
{'name': 'only uvicorn ', 'number_of_tests': 2000, 'total_time_taken_avarage': 586.5985, 'times_avarage_avarage': 4.820865}
{'name': 'gunicorn+uvicorn', 'number_of_tests': 2000, 'total_time_taken_avarage': 571.8415, 'times_avarage_avarage': 4.719035}
带有评论的结果
await asyncio.sleep(delay1)
{'name': 'only uvicorn ', 'number_of_tests': 2000, 'total_time_taken_avarage': 151.301, 'times_avarage_avarage': 0.602495}
{'name': 'gunicorn+uvicorn', 'number_of_tests': 2000, 'total_time_taken_avarage': 144.4655, 'times_avarage_avarage': 0.59196}
我还制作了上述脚本的另一个版本,它每 1 个请求更改 url(它给出的时间略高):
import statistics
import requests
from time import sleep
number_of_tests=1000
sites_to_test=[
{
'name':'only uvicorn ',
'url':'http://127.0.0.1:8083/delay/0.0/0.0',
'total_time_taken_list':[],
'times_avarage_list':[]
},
{
'name':'gunicorn+uvicorn',
'url':'http://127.0.0.1:8084/delay/0.0/0.0',
'total_time_taken_list':[],
'times_avarage_list':[]
}]
for test in sites_to_test:
requests.get(test['url']) # first request may be slower, so better to not measure it
for a in range(number_of_tests):
for test in sites_to_test:
r = requests.get(test['url'])
json= r.json()
test['total_time_taken_list'].append(json['total_time_taken'])
test['times_avarage_list'].append(json['times_avarage'])
# sleep(1) # results are slightly different with sleep between requests
for test in sites_to_test:
total_time_taken_avarage=statistics.mean(test['total_time_taken_list'])
times_avarage_avarage=statistics.mean(test['times_avarage_list'])
print({'name':test['name'], 'number_of_tests':number_of_tests, 'total_time_taken_avarage':total_time_taken_avarage, 'times_avarage_avarage':times_avarage_avarage})
结果:
{'name': 'only uvicorn ', 'number_of_tests': 2000, 'total_time_taken_avarage': 589.4315, 'times_avarage_avarage': 4.789385}
{'name': 'gunicorn+uvicorn', 'number_of_tests': 2000, 'total_time_taken_avarage': 589.0915, 'times_avarage_avarage': 4.761095}
带有评论的结果
await asyncio.sleep(delay1)
{'name': 'only uvicorn ', 'number_of_tests': 2000, 'total_time_taken_avarage': 152.8365, 'times_avarage_avarage': 0.59173}
{'name': 'gunicorn+uvicorn', 'number_of_tests': 2000, 'total_time_taken_avarage': 154.4525, 'times_avarage_avarage': 0.59768}
这个答案应该可以帮助您更好地调试结果。
0.14.0
比问题中所述
0.13.4
.
0.13.4
但结果相似,我仍然无法重现您的结果。
uvicorn==0.14.0
fastapi==0.65.1
gunicorn==20.1.0
uvloop==0.15.2
结果:
{'name': 'only uvicorn ', 'number_of_tests': 500, 'total_time_taken_avarage': 362.038, 'times_avarage_avarage': 2.54142}
{'name': 'gunicorn+uvicorn', 'number_of_tests': 500, 'total_time_taken_avarage': 366.814, 'times_avarage_avarage': 2.56766}
在requirements.txt中没有uvloop:
uvicorn==0.14.0
fastapi==0.65.1
gunicorn==20.1.0
结果:
{'name': 'only uvicorn ', 'number_of_tests': 500, 'total_time_taken_avarage': 595.578, 'times_avarage_avarage': 4.83828}
{'name': 'gunicorn+uvicorn', 'number_of_tests': 500, 'total_time_taken_avarage': 584.64, 'times_avarage_avarage': 4.7155}
Python 3.9.5
在这个答案中。
关于python - Fastapi python 代码执行速度受 uvicorn 与 gunicorn 部署的影响,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67750367/
我在 *.sql 文件中得到了我的数据库转储(表、函数、触发器等)。此时我正在通过 jenkins 部署它们,通过传递执行 shell 命令: sudo -u postgres psql -d my_
我正在使用网络部署 API 来部署网络包(.zip 文件,由 MSDeploy.exe 创建)以编程方式将包发布到服务器(在发布包之前我们需要做一些其他事情这就是为什么我们不使用 MSDeploy.e
我们正在使用 Web Deploy 3 的(几乎完全未记录的)“公共(public) API”来创建我们网站的 .zip 包,然后将其同步到服务器: DeploymentBaseOptions des
将 clojure 应用程序制作成可执行文件的最简单方法是什么,例如 http://rawr.rubyforge.org/ ruby 吗? (exe 和 app 文件也是) 最佳答案 使用 leini
是否可以下载 Android 源代码并针对任何设备进行编译? 我想做的是尝试 GSM 代码部分并编译操作系统并将其部署到我的摩托罗拉手机上。 谢谢! 最佳答案 是的,但这很难,因为大多数手机不共享驱动
我正在考虑用 c/c++ 编写需要在大多数个人计算机上运行的 nbody 样式模拟。本质上是一个 O(n^2) 粒子模拟器。 因为这需要相当用户友好,所以我希望有 1 个不需要用户安装任何东西的 Wi
需要了解 kubernetes 部署中 kube_deployment_status_replicas 和 kube_deployment_spec_replicas 指标的区别 最佳答案 简而言之,
我正在尝试使用分类器部署 Maven Artifact 。由于我需要源代码和 JAR(我从 GWT 使用它),我想获得 artifact-version-classifier.jar 和 artifa
我设置部署以将我的项目代码与存储我的网站的 FTP 服务器上的项目同步。 但是,每次尝试同步时,我总是必须登录。 我什至检查了记住,但它不起作用! 我正在使用最新的 PhpStorm 2017.1.4
我在 Visual Studio 2008 中开发了一个 ASP.NET 网站。现在我想在其他机器上部署它。我怎样才能做到这一点??就像我们为 Windows 应用程序制作安装包一样,我们可以为 AS
将 QT 框架添加到我的 .app 包中 我正在关注 Qt 站点上关于部署的文档。 我创建了一个名为 HTTPClient.app 的应用程序 我在 Contents 下创建了 Framework 文
这个问题不太可能对任何 future 的访客有帮助;它只与一个小的地理区域、一个特定的时间点或一个非常狭窄的情况相关,通常不适用于互联网的全局受众。如需帮助使这个问题更广泛适用,visit the h
我正在研究改变我目前创建营销网站的策略。目前,我完全用 PHP 从头开始构建网站,使用一个简单的包含系统。所有代码(以及内容)都存储在文件(而不是数据库)中,允许我使用 Subversion 进行
我有一个长期运行的服务(在 while 1 循环中)并通过 GCloud pub/sub 处理有效负载,之后它将结果写入数据库。 该服务不需要监听任何端口。 Kind=Deployment 的声明性
似乎部署已停滞不前。我该如何进一步诊断? kubectl rollout status deployment/wordpress Waiting for rollout to finish: 2 ou
我正在Dart中使用前端的Angular和后端的Shelf构建一个客户端/服务器应用程序。当我执行pub build时,它会按预期生成Dart文件的javascript,但不会替换HTML文件中的Da
我在 Azure 部署中心的下拉列表中看不到我的所有 Github 组织存储库。 Azure 很久以前就已经被授权了,下拉列表正确地显示了所有的存储库,直到上周我在 DevOps 中玩游戏时,不得不再
我认为标题几乎说明了一切...对于 Deployd 来说是全新的,所以任何关于如何最好地实现这一点的指示都值得赞赏。 最佳答案 要获取用户创建的集合中的对象(我假设您使用的是 javascript 库
我有一个试图用于CD服务器的部署脚本,但是在编写bash脚本以完成一些所需的步骤(例如运行npm和迁移命令)时遇到了问题。 我将如何从该脚本进入容器bash,运行下面的命令,然后退出以完成对更改的提取
我想在使用 kubectl 时将参数传递给 Kubernetes 部署命令应用部署文件。 示例:在我的部署 .yaml 中,我有如下参数,我想在使用 kubectl apply - f .yaml 运
我是一名优秀的程序员,十分优秀!